## Transverse Equilibrium Distributions\* Steven M. Lund Lawrence Livermore National Laboratory (LLNL) Steven M. Lund and John J. Barnard **USPAS:** "Beam Physics with Intense Space-Charge" UCB: "Interaction of Intense Charged Particle Beams with Electric and Magnetic Fields" US Particle Accelerator School (USPAS) University of California at Berkeley (UCB) US Particle Accelerator School, Stony Brook University Spring Session, 13-24 June, 2011 (Version 20130212) SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 1 ### Transverse Equilibrium Distribution Functions: Outline Vlasov Model Vlasov Equilibria The KV Equilibrium Distribution Continuous Focusing Limit of the KV Equilibrium Distribution Equilibrium Distributions in Continuous Focusing Channels Continuous Focusing: The Waterbag Equilibrium Distribution Continuous Focusing: The Thermal Equilibrium Distribution Continuous Focusing: Debye Screening in a Thermal Equilibrium Beam Continuous Focusing: The Density Inversion Theorem Plausibility of Smooth Vlasov Equilibria in Periodic Transport Channels References SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 2 ### Transverse Equilibrium Dist. Functions: Detailed Outline #### 1) Transverse Vlasov-Poisson Model Vlasov-Poisson System Review: Lattices: Continuous, Solenoidal, and Quadrupole Review: Undepressed Particle Phase Advance #### 2) Vlasov Equilibria **Equilibrium Conditions** Single Particle Constants of the Motion Discussion: Plasma Physics Approach to Beam Physics #### Detailed Outline - 2 #### 3) The KV Equilibrium Distribution Hill's Equation with Linear Space-Charge Forces Review: Courant-Snyder Invariants Courant-Snyder Invariants for a Uniform Density Elliptical Beam KV Envelope Equations KV Equilibrium Distribution Canonical Form of the KV Distribution Function Matched Envelope Structure Depressed Particle Orbits rms Equivalent Beams Discussion/Comments on the KV model #### Appendix A: Self-fields of a Uniform Density Elliptical Beam in Free Space Derivation #1, direct Derivation #2, simplified #### Appendix B: Canonical Transformation of the KV Distribution Canonical Transforms Simplified Moment Calculation SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 3 SM Lund, USPAS, June 2011 <sup>\*</sup> Research supported by the US Dept. of Energy at LLNL and LBNL under contract Nos. DE-AC52-07NA27344 and DE-AC02-05CH11231. ### Detailed Outline - 3 #### 4) The Continuous Focusing Limit of the KV Equilibrium Distribution Reduction of Elliptical Beam Model Wavenumbers of Particle Oscillations Distribution Form Discussion #### 5) Continuous Focusing Equilibrium Distributions Equilibrium Form Poisson's Equation Moments and the rms Equivalent Beam Envelope Equation **Example Distributions** #### 6) Continuous Focusing: The Waterbag Equilibrium Distribution Distribution Form Poisson's Equation Solution in Terms of Accelerator Parameters **Equilibrium Properties** Transverse Equilibrium Distributions 5 ## Detailed Outline - 4 #### 7) Continuous Focusing: The Thermal Equilibrium Distribution Overview Distribution Form Poisson's Equation Solution in Terms of Accelerator Parameters **Equilibrium Properties** #### 8) Continuous Focusing: Debye Screening in a Thermal Equilibrium Beam Poisson's equation for the perturbed potential due to a test charge Solution for characteristic Debye screening #### 9) Continuous Focusing: The Density Inversion Theorem Relation of density profile to the full distribution function #### 10) Comments on the Plausibility of Smooth, non-KV Vlasov Equilibria in Periodic Focusing Lattices Discussion **Contact Information** References Acknowledgments SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 6 SM Lund, USPAS, June 2011 #### S1: Transverse Vlasov-Poisson Model: for a 2D coasting, single species beam with electrostatic self-fields propagating in a linear focusing lattice: $\mathbf{X}_{\perp}$ , $\mathbf{X}'_{\perp}$ transverse particle coordinate, angle q, m charge, mass $f_{\perp}(\mathbf{x}_{\perp}, \mathbf{x}'_{\perp}, s)$ single particle distribution $\gamma_b$ , $\beta_b$ axial relativistic factors $H_{\perp}(\mathbf{x}_{\perp},\mathbf{x}_{\perp}',s)$ single particle Hamiltonian Vlasov Equation (see J.J. Barnard, Introductory Lectures): $$\frac{d}{ds}f_{\perp} = \frac{\partial f_{\perp}}{\partial s} + \frac{d\mathbf{x}_{\perp}}{ds} \cdot \frac{\partial f_{\perp}}{\partial \mathbf{x}_{\perp}} + \frac{d\mathbf{x}'_{\perp}}{ds} \cdot \frac{\partial f_{\perp}}{\partial \mathbf{x}'_{\perp}} = 0$$ #### Particle Equations of Motion: $$\frac{d}{ds}\mathbf{x}_{\perp} = \frac{\partial H_{\perp}}{\partial \mathbf{x}'_{\perp}}$$ $$\frac{d}{ds}\mathbf{x}_{\perp} = \frac{\partial H_{\perp}}{\partial \mathbf{x}'_{\perp}} \qquad \frac{d}{ds}\mathbf{x}'_{\perp} = -\frac{\partial H_{\perp}}{\partial \mathbf{x}_{\perp}}$$ Hamiltonian (see S.M. Lund, lectures on Transverse Particle Dynamics): $$H_{\perp} = \frac{1}{2} \mathbf{x}_{\perp}^{\prime 2} + \frac{1}{2} \kappa_x(s) x^2 + \frac{1}{2} \kappa_y(s) y^2 + \frac{q}{m \gamma_b^3 \beta_b^2 c^2} \phi$$ #### Poisson Equation: $$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\phi = -\frac{q}{\epsilon_0} \int d^2 \mathbf{x}'_{\perp} f_{\perp}$$ + boundary conditions on $\phi$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions Hamiltonian expression of the Vlasov equation: $$\begin{aligned} \frac{d}{ds}f_{\perp} &= \frac{\partial f_{\perp}}{\partial s} + \frac{d\mathbf{x}_{\perp}}{ds} \cdot \frac{\partial f_{\perp}}{\partial \mathbf{x}_{\perp}} + \frac{d\hat{\mathbf{x}'_{\perp}}}{ds} \cdot \frac{\partial f_{\perp}}{\partial \mathbf{x'_{\perp}}} = 0 \\ &= \frac{\partial f_{\perp}}{\partial s} + \frac{\partial H_{\perp}}{\partial \mathbf{x}'_{\perp}} \cdot \frac{\partial f_{\perp}}{\partial \mathbf{x}_{\perp}} - \frac{\partial H_{\perp}}{\partial \mathbf{x}_{\perp}} \cdot \frac{\partial f_{\perp}}{\partial \mathbf{x}'_{\perp}} = 0 \end{aligned}$$ Using the equations of motion: $$\frac{d}{ds}\mathbf{x}_{\perp} = \frac{\partial H_{\perp}}{\partial \mathbf{x}_{\perp}'} = \mathbf{x}_{\perp}'$$ $$\frac{d}{ds}\mathbf{x}_{\perp}' = -\frac{\partial H_{\perp}}{\partial \mathbf{x}_{\perp}} = -\left(\kappa_{x}x\hat{\mathbf{x}} + \kappa_{y}y\hat{\mathbf{y}} + \frac{q}{m\gamma_{h}^{3}\beta_{h}^{2}c^{2}}\frac{\partial\phi}{\partial \mathbf{x}_{\perp}}\right)$$ $$\frac{\partial f_{\perp}}{\partial s} + \mathbf{x}'_{\perp} \cdot \frac{\partial f_{\perp}}{\partial \mathbf{x}_{\perp}} - \left(\kappa_{x} x \hat{\mathbf{x}} + \kappa_{y} y \hat{\mathbf{y}} + \frac{q}{m \gamma_{h}^{3} \beta_{h}^{2} c^{2}} \frac{\partial \phi}{\partial \mathbf{x}_{\perp}}\right) \cdot \frac{\partial f_{\perp}}{\partial \mathbf{x}'_{\perp}} = 0$$ In formal dynamics, a "Poisson Bracket" notation is often employed: $$\begin{split} \frac{d}{ds}f_{\perp} &= \frac{\partial f_{\perp}}{\partial s} + \frac{\partial H_{\perp}}{\partial \mathbf{x}'_{\perp}} \cdot \frac{\partial f_{\perp}}{\partial \mathbf{x}_{\perp}} - \frac{\partial H_{\perp}}{\partial \mathbf{x}_{\perp}} \cdot \frac{\partial f_{\perp}}{\partial \mathbf{x}'_{\perp}} = 0 \\ &\equiv \frac{\partial f_{\perp}}{\partial s} + \{H_{\perp}, f_{\perp}\} = 0 \end{split}$$ Poisson Bracket SM Lund, USPAS, June 2011 #### Comments on Vlasov-Poisson Model - Collisionless Vlasov-Poisson model good for intense beams with many particles Collisions negligible, see: J.J. Barnard, Introductory Lectures - ◆ Vlasov-Poisson model can be solved as an initial value problem - 1) $f_{\perp}(\mathbf{x}_{\perp}, \mathbf{x}'_{\perp}, s = s_i) = \text{Initial "condition" (function) specified}$ - 2) Vlasov-Poisson model solved for subsequent evolution in s for $f_{\perp}(\mathbf{x}_{\perp}, \mathbf{x}'_{\perp}, s)$ for $s \geq s_i$ - → The coupling to the self-field via the Poisson equation makes the Vlasov-Poisson model *highly* nonlinear Review: Focusing lattices, continuous and periodic (simple piecewise constant): d/2 $d_1 = \alpha(1-\eta)L_p$ $d_2 = (1-\alpha)(1-\eta)L_p$ $$\rho = q \int d^2 x'_{\perp} \ f_{\perp} \qquad \left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \phi = -\frac{\rho}{\epsilon_0}$$ Vlasov-Poisson system is written without acceleration, but the transforms developed to identify the normalized emittance in the lectures on Transverse Particle Dynamics can be exploited to generalize all result presented to (weakly) accelerating beams (interpret in tilde variables) - System as expressed applies to 2D (unbunched) beam as expressed - Considerable difficulty in analysis for 3D version for transverse/longitudinal physics - ◆ For solenoidal focusing the system can be interpreted in the rotating Larmor Frame, see: lectures on Transverse Particle Dynamics Transverse Equilibrium Distributions 9 Lattice Period $L_n$ Occupancy $\eta$ $\eta \in [0, 1]$ Larmor frame Solenoid description carried out implicitly in [see: S.M. Lund, lectures on Syncopation Factor $\alpha$ $\alpha \in [0, \frac{1}{2}]$ $\alpha = \frac{1}{2} \implies FODO$ Transverse Particle Dynamics SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 10 SM Lund, USPAS, June 2011 a) Continuous b) Periodic Solenoid $(\kappa_x = \kappa_y)$ $(\kappa_x = \kappa_y = k_{BO}^2 = \text{const})$ c) Periodic Quadrupole Doublet D Quad ## Example Hamiltonians: See S.M. Lund Lectures on Transverse Particle Dynamics for more details Continuous focusing: $\kappa_x = \kappa_y = k_{\beta 0}^2 = \text{const}$ $$H_{\perp} = \frac{1}{2} {\mathbf{x}_{\perp}'}^2 + \frac{1}{2} k_{\beta 0}^2 {\mathbf{x}_{\perp}}^2 + \frac{q}{m \gamma_b^3 \beta_b^2 c^2} \phi$$ Solenoidal focusing: (in Larmor frame variables) $\kappa_x = \kappa_y = \kappa(s)$ $$H_{\perp} = rac{1}{2}{{\mathbf{x}'_{\perp}}^2} + rac{1}{2}\kappa{{\mathbf{x}}_{\perp}^2} + rac{q}{m\gamma_b^3eta_b^2c^2}\phi$$ Quadrupole focusing: $\kappa_x = -\kappa_y = \kappa(s)$ $$H_{\perp} = \frac{1}{2} \mathbf{x}_{\perp}^{\prime 2} + \frac{1}{2} \kappa x^2 - \frac{1}{2} \kappa y^2 + \frac{q}{m \gamma_{i}^3 \beta_{i}^2 c^2} \phi$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 11 SM Lund, USPAS, June 2011 Review: Undepressed particle phase advance $\sigma_0$ is typically employed to characterize the applied focusing strength of periodic lattices: see: S.M. Lund lectures on Transverse Particle Dynamics x-orbit without space-charge satisfies Hill's equation $$x''(s) + \kappa_x(s)x(s) = 0$$ $$\left( \begin{array}{c} x(s) \\ x'(s) \end{array} \right) = \mathbf{M}_x(s \mid s_i) \cdot \left( \begin{array}{c} x(s_i) \\ x'(s_i) \end{array} \right) \qquad \mathbf{M}_x = \begin{array}{c} 2 \text{ x 2 Transfer} \\ \text{Matrix from} \\ s = s_i \text{ to } s_i \end{array}$$ Undepressed phase advance $$\cos \sigma_{0x} = rac{1}{2} \mathrm{Tr} \; \mathbf{M}_x (s_i + L_p | s_i)$$ • Subscript 0x used stresses x-plane value and zero (Q = 0) space-charge effects Single particle (and centroid) stability requires: $$\frac{1}{2}|\text{Tr }\mathbf{M}_x(s_i + L_p|s_i)| \le 1 \longrightarrow \sigma_{0x} < 180^{\circ}$$ [Courant and Snyder, Annals of Phys. 3, 1 (1958)] $$\sigma_{0x} < 180^{\circ}$$ Analogous equations hold in the y-plane SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 13 SM Lund, USPAS, June 2011 $\sigma_{0x} = \int_{0x}^{s_i + L_p} \frac{ds}{w_0^2}$ Transverse Equilibrium Distributions 14 S2: Vlasov Equilibria: Plasma physics-like approach is to resolve the system into an equilibrium + perturbation and analyze stability Equilibrium constructed from single-particle constants of motion $C_1$ $$f_{\perp} = f_{\perp}(\{C_i\}) \geq 0 \quad \Longrightarrow \quad \text{Equilibrium}$$ $$f_{\perp}=f_{\perp}(\{C_i\})\geq 0 \implies ext{Equilibrium}$$ $$\frac{d}{ds}f_{\perp}(\{C_i\})=\sum_i \frac{\partial f_{\perp}}{\partial C_i} \frac{dC_i}{ds} \stackrel{0}{=} 0$$ Comments: - Equilibrium is an exact solution to Vlasov's equation that does not change in 4D phase-space functional form as s advances - Equilibrium distribution periodic in lattice period in periodic lattice - Projections of the distribution can evolve in s in non-continuous lattices - Equilibrium is "time independent" ( $\partial/\partial s = 0$ ) in continuous focusing - Requirement of non-negative $f_{\perp}(\{C_i\})$ follows from single particle species - Particle constants of the motion $\{C_i\}$ are in the presence of (possibly svarying) applied and space-charge forces - Highly non-trivial! - Only one exact solution known for s-varying focusing using Courant-Snyder invariants: the KV distribution to be analyzed in this lecture /// Example: Continuous focusing $f_{\perp} = f_{\perp}(H_{\perp})$ $$H_{\perp}= rac{1}{2}{f x}_{\perp}^{\prime}{}^2+ rac{1}{2}k_{eta0}^2{f x}_{\perp}^2+ rac{q}{m\gamma_b^3eta_b^2c^2}\phi$$ no explicit s dependence The undepressed phase advance can also be equivalently calculated from: $w_{0x}'' + \kappa_x w_{0x} - \frac{1}{w_{0x}^3} = 0$ $w_{0x}(s + \overline{L_p}) = w_{0x}(s)$ • Subscript 0x stresses x-plane value and zero (Q = 0) space-charge effects - Need to generalize notation since we will add space-charge effects $$\frac{df_{\perp}}{ds} = \frac{\partial f_{\perp}}{\partial s} + \frac{\partial H_{\perp}}{\partial \mathbf{x}'_{\perp}} \cdot \frac{\partial f_{\perp}}{\partial \mathbf{x}_{\perp}} - \frac{\partial H_{\perp}}{\partial \mathbf{x}_{\perp}} \cdot \frac{\partial f_{\perp}}{\partial \mathbf{x}'_{\perp}} \qquad \text{see problem sets for detailed argument}$$ $$= \frac{\partial f_{\perp}}{\partial H_{\perp}} \frac{\partial H_{\perp}}{\partial s} + \frac{\partial f_{\perp}}{\partial H_{\perp}} \left( \frac{\partial H_{\perp}}{\partial \mathbf{x}'_{\perp}} \cdot \frac{\partial H_{\perp}}{\partial \mathbf{x}_{\perp}} \middle/ \frac{\partial H_{\perp}}{\partial \mathbf{x}_{\perp}} \cdot \frac{\partial H_{\perp}}{\partial \mathbf{x}'_{\perp}} \right) = 0$$ Showing that $f_{\perp} = f_{\perp}(H_{\perp})$ exactly satisfies Vlasov's equation for continuous focusing - Also, for physical solutions must require: $f_{\perp}(H_{\perp}) \geq 0$ - To be appropriate for single species with positive density - Huge variety of equilibrium function choices $f_{\perp}(H_{\perp})$ can be made to generate many radically different equilibria - Infinite variety in function space - Does NOT apply to systems with s-varying focusing $\kappa_x \to k_{\beta 0}^2$ - Can provide a rough guide if we can approximate: /// SM Lund, USPAS, June 2011 ### Typical single particle constants of motion: Transverse Hamiltonian for continuous focusing: $$H_{\perp} = \frac{1}{2} \mathbf{x}_{\perp}^{\prime 2} + \frac{1}{2} k_{\beta 0}^{2} \mathbf{x}_{\perp}^{2} + \frac{q}{m \gamma_{b}^{3} \beta_{b}^{2} c^{2}} \phi = \text{const}$$ $$k_{\beta 0}^{2} = \text{const}$$ Not valid for periodic focusing systems! Angular momentum for systems invariant under azimuthal rotation: $$P_{\theta} = xy' - yx' = \text{const}$$ - ◆ Subtle point: This form is really a Canonical Angular Momentum and applies to solenoidal magnetic focusing when the variables are expressed in the rotating Larmor frame (i.e., in the "tilde" variables) - see: S.M. Lund, lectures on Transverse Particle Dynamics Axial kinetic energy for systems with no acceleration: $$\mathcal{E} = (\gamma_b - 1)mc^2 = \text{const}$$ • Trivial for a coasting beam with $\gamma_b \beta_b = \text{const}$ More on other classes of constraints later ... SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 17 ### Plasma physics approach to beam physics: Resolve: and carry out equilibrium + stability analysis Comments: - ◆ Attraction is to parallel the impressive successes of plasma physics - Gain insight into preferred state of nature - Beams are born off a source and may not be close to an equilibrium condition - Appropriate single particle constants of the motion unknown for periodic focusing lattices other than the (unphysically idealistic) KV distribution - Intense beam self-fields and finite radial extent vastly complicate equilibrium description and analysis of perturbations - Unknown if smooth Vlasov equilibria exist (exact sense) in periodic focusing though recent perturbation theory/simulations suggest self-similar classes of distributions have near equilibrium form - Higher model detail vastly complicates picture! - ◆ If system can be tuned to more closely resemble a relaxed, equilibrium, one might expect less deleterious effects based on plasma physics analogies SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 18 ### S3: The KV Equilibrium Distribution [Kapchinskij and Vladimirskij, Proc. Int. Conf. On High Energy Accel., p. 274 (1959); and Review: Lund, Kikuchi, and Davidson, PRSTAB **12**, 114801 (2009)] Assume a uniform density elliptical beam in a periodic focusing lattice #### Line-Charge: $$\lambda = qn(s)\pi r_x(s)r_y(s)$$ = const (charge conservation) Beam Edge: $$\frac{x^2}{r_x^2(s)} + \frac{y^2}{r_y^2(s)} = 1$$ (ellipse) $r_x$ $r_x^2(s)$ $r_y^2(s)$ Free-space self-field solution within the beam (see: Appendix A) is: $$\phi = -\frac{\lambda}{2\pi\epsilon_0} \left[ \frac{x^2}{(r_x + r_y)r_x} + \frac{y^2}{(r_x + r_y)r_y} \right] + \text{const}$$ $$-\frac{\partial \phi}{\partial x} = \frac{\lambda}{\pi \epsilon_0} \frac{x}{(r_x + r_y)r_x}$$ $$-\frac{\partial \phi}{\partial y} = \frac{\lambda}{\pi \epsilon_0} \frac{y}{(r_x + r_y)r_x}$$ valid only within the beam! Nonlinear outside beam SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 19 The particle equations of motion: $$x'' + \kappa_x x = -\frac{q}{m\gamma_b^3 \beta_b^2 c^2} \frac{\partial \phi}{\partial x}$$ $$y'' + \kappa_y y = -\frac{q}{m\gamma_b^3 \beta_b^2 c^2} \frac{\partial \phi}{\partial y}$$ become within the beam: $$x''(s) + \left\{ \kappa_x(s) - \frac{2Q}{[r_x(s) + r_y(s)]r_x(s)} \right\} x(s) = 0$$ $$y''(s) + \left\{ \kappa_y(s) - \frac{2Q}{[r_x(s) + r_y(s)]r_y(s)} \right\} y(s) = 0$$ Here, Q is the dimensionless perveance defined by: $$Q = \frac{q\lambda}{2\pi\epsilon_0 m\gamma_b^3 \beta_b^2 c^2} = \text{const}$$ - ◆ Same measure of space-charge intensity used by J.J. Barnard in Intro. Lectures - Properties/interpretations of the perveance will be extensively developed in in this and subsequent lectures - Will appear in same form in many different space-charge problems SM Lund, USPAS, June 2011 If we regard the envelope radii $r_x$ , $r_y$ as specified functions of s, then these equations of motion are Hill's equations familiar from elementary accelerator physics: $$x''(s) + \kappa_x^{\text{eff}}(s)x(s) = 0$$ $$y''(s) + \kappa_y^{\text{eff}}(s)y(s) = 0$$ $$\kappa_x^{\text{eff}}(s) = \kappa_x(s) - \frac{2Q}{[r_x(s) + r_y(s)]r_x(s)}$$ $$\kappa_y^{\text{eff}}(s) = \kappa_y(s) - \frac{2Q}{[r_x(s) + r_y(s)]r_y(s)}$$ #### Suggests Procedure: - ◆ Calculate Courant-Snyder invariants under assumptions made - Construct a distribution function of Courant-Snyder invariants that generates the uniform density elliptical beam projection assumed - Nontrivial step: guess and show that it works: KV construction Resulting distribution will be an equilibrium that does not evolve in functional form, but phase-space projections will evolve in s when focusing functions vary in s SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 21 #### Review (1): The Courant-Snyder invariant of Hill's equation [Courant and Snyder, Annl. Phys. 3, 1 (1958)] Hill's equation describes a zero space-charge particle orbit in linear applied focusing fields: $$x''(s) + \kappa(s)x(s) = 0$$ As a consequence of Floquet's theorem, the solution can be cast in phase-amplitude form: $$x(s) = A_i w(s) \cos \psi(s)$$ $\psi'(s) \equiv \frac{1}{w^2(s)}$ where w(s) is the periodic amplitude function satisfying $$w''(s) + \kappa(s)w(s) - \frac{1}{w^3(s)} = 0$$ $w(s + L_n) = w(s) \quad w(s) > 0$ $\psi(s)$ is a phase function given by $$\psi(s) = \psi_i + \int_{s_i}^s \frac{d\tilde{s}}{w^2(\tilde{s})}$$ $A_i$ and $\psi_i$ are constants set by initial conditions at $s=s_i$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 22 ### Review (2): The Courant-Snyder invariant of Hill's equation From this formulation, it follows that $$x(s) = A_i w(s) \cos \psi(s)$$ $$x'(s) = A_i w'(s) \cos \psi(s) - \frac{A_i}{w(s)} \sin \psi(s)$$ $$\psi'(s) \equiv \frac{1}{w^2(s)}$$ or $$\frac{x}{w} = A_i \cos \psi$$ $$wx' - w'x = A_i \sin \psi$$ square and add equations to obtain the Courant-Snyder invariant $$\left(\frac{x}{w}\right)^2 + (wx' - w'x)^2 = A_i^2 = \text{const}$$ - Simplifies interpretation of dynamics - Extensively used in accelerator physics Phase-amplitude description of particles evolving within a uniform density beam: Phase-amplitude form of *x*-orbit equations: initial conditions yield: $$x(s) = A_{xi}w_x(s)\cos\psi_x(s)$$ $$x'(s) = A_{xi}w'_x(s)\cos\psi_x(s) - \frac{A_{xi}}{w_x(s)}\sin\psi_x(s)$$ $$(s = s_i)$$ $$A_{xi} = \text{const}$$ $$\psi_{xi} = \psi_x(s = s_i)$$ $$= \text{const}$$ $$w_x''(s) + \kappa_x(s)w_x(s) - \frac{2Q}{[r_x(s) + r_y(s)]r_x(s)}w_x(s) - \frac{1}{w_x^3(s)} = 0$$ $$w_x(s + L_p) = w_x(s) \qquad w_x(s) > 0$$ $$\psi_x(s) = \psi_{xi} + \int_{s_i}^s \frac{d\tilde{s}}{w_x^2(\tilde{s})}$$ identifies the Courant-Snyder invariant $$\left(\frac{x}{w_x}\right)^2 + (w_x x' - w_x' x)^2 = A_{xi}^2 = \text{const}$$ Analogous equations hold for the y-plane SM Lund, USPAS, June 2011 #### The KV envelope equations: Define *maximum* Courant-Snyder invariants: $$\varepsilon_x \equiv \operatorname{Max}(A_{xi}^2)$$ $x = A_{xi}w_x \cos \psi_x \longrightarrow r_b = A_{x,\max}w_x$ $$\varepsilon_y \equiv \operatorname{Max}(A_{yi}^2)$$ Values must correspond to the beam-edge radii: $$r_x(s) = \sqrt{\varepsilon_x} w_x(s)$$ $r_y(s) = \sqrt{\varepsilon_y} w_y(s)$ The equations for $w_{\downarrow}$ and $w_{\downarrow}$ can then be rescaled to obtain the familiar KV envelope equations for the matched beam envelope $$r''_{x}(s) + \kappa_{x}(s)r_{x}(s) - \frac{2Q}{r_{x}(s) + r_{y}(s)} - \frac{\varepsilon_{x}^{2}}{r_{x}^{3}(s)} = 0$$ $$r''_{y}(s) + \kappa_{y}(s)r_{y}(s) - \frac{2Q}{r_{x}(s) + r_{y}(s)} - \frac{\varepsilon_{y}^{2}}{r_{y}^{3}(s)} = 0$$ $$r_{x}(s + L_{p}) = r_{x}(s) \qquad r_{x}(s) > 0$$ $$r_{y}(s + L_{p}) = r_{y}(s) \qquad r_{y}(s) > 0$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 25 Transverse Equilibrium Distributions 27 Use variable rescalings to denote x- and y-plane Courant-Snyder invariants as: $$\left(\frac{x}{w_x}\right)^2 + (w_x x' - w_x' x)^2 = A_{xi}^2 = \text{const}$$ $$\left(\frac{x}{r_x}\right)^2 + \left(\frac{r_x x' - r_x' x}{\varepsilon_x}\right)^2 \equiv C_x = \text{const}$$ $$\left(\frac{y}{r_y}\right)^2 + \left(\frac{r_y y' - r_y' y}{\varepsilon_y}\right)^2 \equiv C_y = \text{const}$$ Kapchinskij and Vladimirskij constructed a delta-function distribution of a linear combination of these Courant-Snyder invariants that generates the correct uniform density elliptical beam needed for consistency with the assumptions: $$f_{\perp} = \frac{\lambda}{q\pi^2 \varepsilon_x \varepsilon_y} \delta \left[ C_x + C_y - 1 \right]$$ - ◆ Delta function means the sum of the *x* and *y*-invariants is a constant - Other forms cannot generate the needed uniform density elliptical beam projection (see: S9) - ◆ Density inversion theorem covered later can be used to derive result SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 26 #### The KV equilibrium is constructed from the Courant-Snyder invariants: KV equilibrium distribution write out full arguments in x, x': $$\begin{split} f_{\perp}(\mathbf{x}_{\perp},\mathbf{x}_{\perp}',s) &= \frac{\lambda}{q\pi^{2}\varepsilon_{x}\varepsilon_{y}}\delta\left[\left(\frac{x}{r_{x}}\right)^{2} + \left(\frac{r_{x}x' - r_{x}'x}{\varepsilon_{x}}\right)^{2} + \left(\frac{y}{r_{y}}\right)^{2} + \left(\frac{r_{y}y' - r_{y}'y}{\varepsilon_{y}}\right)^{2} - 1\right] \\ \delta(x) &= \text{ Dirac delta function} \end{split}$$ This distribution generates (see: proof in Appendix B) the correct uniform density elliptical beam: $$n = \int \! d^2 x_{\perp}' \ f_{\perp} \ = \left\{ egin{array}{l} rac{\lambda}{q \pi r_x r_y}, & x^2/r_x^2 + y^2/r_y^2 < 1 \ 0, & x^2/r_x^2 + y^2/r_y^2 > 1 \end{array} ight.$$ Obtaining this form consistent with the assumptions, thereby demonstrating full self-consistency of the KV equilibrium distribution. - Full 4-D form of the distribution does not evolve in s - Projections of the distribution can (and generally do!) evolve in s /// Comment on notation of integrals: - 2<sup>nd</sup> forms useful for systems with azimuthal spatial or annular symmetry Spatial $$\int d^2x_{\perp} \cdots \equiv \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \cdots$$ $$= \int_0^\infty dr \ r \int_{-\pi}^{\pi} d\theta \ \cdots \qquad \qquad \text{Cylindrical Coordinates:} \\ x = r \cos \theta$$ $u = r \sin \theta$ Angular $$\int d^2x'_{\perp} \cdots \equiv \int_{-\infty}^{\infty} dx' \int_{-\infty}^{\infty} dy' \cdots$$ $$= \int_0^\infty d\tilde{r'} \, \tilde{r'} \int_{-\pi}^{\pi} d\tilde{\theta'} \, \cdots \qquad \qquad x' = \tilde{r'} \cos \tilde{\theta'}$$ Cylindrical Coordinates: $$x' = \tilde{r'} \cos \tilde{\theta'}$$ $$x = r \cos \theta$$ SM Lund, USPAS, June 2011 Use care when interpreting dimensions of symbols in cylindrical form of angular integrals: $$\tilde{r'} \neq \frac{d}{ds}r = \frac{d}{ds}\sqrt{x^2 + y^2}$$ $[[\tilde{r'}]] = \text{Angle}$ $\tilde{r'} \in [0, \infty)$ $\tilde{\theta'} \neq \frac{d}{ds}\theta = \frac{d}{ds}\text{ArcTan}[y, x]$ $[[\tilde{\theta'}]] = \text{rad}$ $\tilde{\theta'} \in [-\pi, \pi]$ $$x' = \tilde{r'}\cos\tilde{\theta'}$$ [[x']] = Angle $x' \in (-\infty, \infty)$ $y' = \tilde{r'}\sin\tilde{\theta'}$ [[y']] = Angle $y' \in (-\infty, \infty)$ Tilde is used in angular cylindrical variables to stress that cylindrical variables are chosen in form to span the correct ranges in x' and y' but are not d/ds of the usual cylindrical polar coordinates! SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 29 #### Comment on notation of integrals (continued): Axisymmetry simplifications Spatial: for some function $f(\mathbf{x}^2) = f(r^2)$ $$\int d^2x_{\perp} f(\mathbf{x}_{\perp}^2) = 2\pi \int_0^{\infty} dr \, r f(r^2)$$ $$= \pi \int_0^{\infty} dr^2 \, f(r^2)$$ $$= \pi \int_0^{\infty} dw \, f(w)$$ Cylindrical Coordinates: $$x = r \cos \theta$$ $$y = r \sin \theta$$ $$w = r^2$$ Angular: for some function $g(\mathbf{x}'^2) = g(\tilde{r'}^2)$ $$\int d^2x'_{\perp} g(\mathbf{x}'^{2}_{\perp}) = 2\pi \int_{0}^{\infty} d\tilde{r'} \, \tilde{r'} g(\tilde{r'}^{2})$$ Cylindrical Coordinates: $$x' = \tilde{r'} \cos \tilde{\theta'}$$ $$= \pi \int_{0}^{\infty} d\tilde{r'}^{2} g(\tilde{r'}^{2})$$ $$y' = \tilde{r'} \sin \tilde{\theta'}$$ $$= \pi \int_{0}^{\infty} du \, g(u)$$ $$u = \tilde{r'}^{2}$$ $$u' = \tilde{x'} \sin \tilde{\theta'}$$ $$u = \tilde{r'}^2$$ /// SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions Moments of the KV distribution can be calculated directly from the distribution to further aid interpretation: [see: Appendix B for methods to simply calculate] Full 4D average: $$\langle \cdots \rangle_{\perp} \equiv \frac{\int \! d^2 x_{\perp} \int \! d^2 x_{\perp}' \cdots f_{\perp}}{\int \! d^2 x_{\perp} \int \! d^2 x_{\perp}' f_{\perp}}$$ Restricted angle average: $$\langle \cdots \rangle_{\mathbf{x}_{\perp}'} \equiv \frac{\int d^2 x_{\perp}' \ \cdots f_{\perp}}{\int d^2 x_{\perp}' \ f_{\perp}}$$ Envelope edge radius: Envelope edge angle: $$r_x = 2\langle x^2 \rangle_{\perp}^{1/2}$$ $$r_x' = 2\langle xx'\rangle_{\perp}/\langle x^2\rangle_{\perp}^{1/2}$$ rms edge emittance (maximum Courant-Snyder invariant): $$\varepsilon_x = 4[\langle x^2 \rangle_{\perp} \langle x'^2 \rangle_{\perp} - \langle xx' \rangle_{\perp}^2]^{1/2} = \text{const}$$ Coherent flows (within the beam, zero otherwise): $$\langle x' \rangle_{\mathbf{x}'_{\perp}} = r'_x \frac{x}{r_{\perp}}$$ $\langle x' \rangle_{{f x}'_{\perp}} = r'_x {x\over r_x}$ Angular spread (x-temperature, within the beam, zero otherwise): $$T_x \equiv \langle (x' - \langle x' \rangle_{\mathbf{x}'_{\perp}})^2 \rangle_{\mathbf{x}'_{\perp}} = \frac{\varepsilon_x^2}{2r_x^2} \left( 1 - \frac{x^2}{r_x^2} - \frac{y^2}{r_y^2} \right)$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 31 Summary of 1<sup>st</sup> and 2<sup>nd</sup> order moments of the KV distribution: | Moment | Value | |--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | $\int d^2x'_{\perp} \ x'f_{\perp}$ | $r_x' \frac{x}{r_x} n$ | | $\int d^2x'_{\perp} \ y'f_{\perp}$ | $r_y' \frac{y}{r_y} n$ | | $\int d^2x'_{\perp} \ x'^2 f_{\perp}$ | $\left[ r_{x}^{\prime 2} \frac{x^{2}}{r_{x}^{2}} + \frac{\varepsilon_{x}^{2}}{2r_{x}^{2}} \left( 1 - \frac{x^{2}}{r_{x}^{2}} - \frac{y^{2}}{r_{y}^{2}} \right) \right] n$ | | $\int d^2x'_{\perp} \ y'^2f_{\perp}$ | $\left[r_y'^2 \frac{y^2}{r_y^2} + \frac{\varepsilon_y^2}{2r_y^2} \left(1 - \frac{x^2}{r_x^2} - \frac{y^2}{r_y^2}\right)\right] n$ | | $\int d^2x'_\perp \ xx'f_\perp$ | $\frac{r'_x}{r_x}x^2n$ | | $\int d^2x'_\perp \ yy'f_\perp$ | $\frac{r'_y}{r_y}y^2n$ | | $\int d^2x'_{\perp} \ (xy'-yx')f_{\perp}$ | 0 | | $\langle x^2 \rangle_{\perp}$ | $\frac{r_x^2}{4}$ | | $\langle y^2 \rangle_{\perp}$ | $\frac{r_y^2}{4}$ | | $\langle x'^2 \rangle_{\perp}$ | $\frac{r_{x}'^{2}}{4} + \frac{\varepsilon_{x}^{2}}{4r_{x}^{2}}$ | | $\langle y'^2 \rangle_{\!\perp}$ | $\frac{r_y'^2}{4} + \frac{\varepsilon_y^2}{4r_y^2}$ | | $\langle xx'\rangle_{\perp}$ | $\frac{r_x r_x'}{4}$ | | $\langle yy' \rangle_{\perp}$ | $\frac{r_y r'_y}{4}$ | | $\langle xy' - yx' \rangle_{\perp}$ | 0 | | $16[\langle x^2\rangle_{\perp}\langle x'^2\rangle_{\perp} - \langle xx'\rangle_{\perp}^2]$ | $\varepsilon_x^2$ | | $16[\langle y^2\rangle_{\!\perp}\langle y'^2\rangle_{\!\perp} - \langle yy'\rangle_{\!\perp}^2]$ | $\varepsilon_y^2$ | All 1st and 2nd order moments not listed vanish, i.e., $$\int d^2x'_{\perp} \ xyf_{\perp} = 0$$ $$\langle xy \rangle_{\perp} = 0$$ see reviews by: (limit of results presented) Lund and Bukh, PRSTAB 7, 024801 (2004), Appendix A S.M. Lund, T. Kikuchi, and R.C. Davidson, PRSTAB 12, 114801 (2009) SM Lund, USPAS, June 2011 ### Canonical transformation illustrates KV distribution structure: [Davidson, Physics of Nonneutral Plasmas, Addison-Wesley (1990), and Appendix B] Phase-space transformation: $$X = \frac{\sqrt{\varepsilon_x}}{r_x} x$$ $$X' = \frac{r_x x' - r_x' x}{\sqrt{\varepsilon_x}}$$ $$dx dy = \frac{r_x r_y}{\sqrt{\varepsilon_x \varepsilon_y}} dX dY$$ $$dx' dy' = \frac{\sqrt{\varepsilon_x \varepsilon_y}}{r_x r_y} dX' dY'$$ $$dx dy dx' dy' = dX dY dX' dY'$$ Courant-Snyder invariants in the presence of beam space-charge are then simply: $$X^2 + X'^2 = \text{const}$$ and the KV distribution takes the simple, symmetrical form: $$f_{\perp}(x,y,x',y',s) = f_{\perp}(X,Y,X',Y') = \frac{\lambda}{q\pi^2\varepsilon_x\varepsilon_y}\delta\left[\frac{X^2+X'^2}{\varepsilon_x} + \frac{Y^2+Y'^2}{\varepsilon_y} - 1\right]$$ from which the density and other projections can be (see: Appendix B) calculated more easily: $n = \int d^2 x'_{\perp} f_{\perp} = \frac{\lambda}{q \pi r_x r_y} \int_0^{\infty} dU^2 \, \delta \left[ U^2 - \left( 1 - \frac{x^2}{r_x^2} - \frac{y^2}{r_y^2} \right) \right]$ $$= \begin{cases} \frac{\lambda}{q\pi r_x r_y}, & x^2/r_x^2 + y^2/r_y^2 < 1\\ 0, & x^2/r_x^2 + y^2/r_y^2 > 1 \end{cases}$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 33 #### KV Envelope equation The envelope equation reflects low-order force balances Terms: Lattice Perveance Emittance ### $\kappa_u(s+L_p) = \kappa_u(s)$ #### Comments: - ◆ Envelope equation is a projection of the 4D invariant distribution - Envelope evolution equivalently given by moments of the 4D equilibrium distribution - ◆ Most important basic design equation for transport lattices with high space-charge intensity - Simplest consistent model incorporating applied focusing, space-charge defocusing, and thermal defocusing forces - Starting point of almost all practical machine design! SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 34 #### Comments Continued: ▶ Beam envelope matching where the beam envelope has the periodicity of the lattice $$r_x(s + L_p) = r_x(s)$$ $$r_y(s + L_p) = r_y(s)$$ will be covered in much more detail in S.M. Lund lectures on Centroid and Envelope Description of Beams. Envelope matching requires specific choices of initial conditions $$r_x(s_i), r_y(s_i)$$ $r'_x(s_i), r'_y(s_i)$ for periodic evolution. - ▶ Instabilities of envelope equations are well understood and real (to be covered: see S.M. Lund lectures on Centroid and Envelope Description of Beams) - Must be avoided for reliable machine operation The matched solution to the KV envelope equations reflects the symmetry of the focusing lattice and must in general be calculated numerically #### **Matching Condition** $$r_x(s + L_p) = r_x(s)$$ $$r_y(s + L_p) = r_y(s)$$ #### **Example Parameters** $$r_x(s+L_p) = r_x(s)$$ $L_p = 0.5 \text{ m}, \ \sigma_0 = 80^\circ, \ \eta = 0.5$ $\varepsilon_x = \varepsilon_y = 50 \text{ mm-mrad}$ $\sigma/\sigma_0 = 0.2$ ### Solenoidal Focusing $(Q = 6.6986 \times 10^{-4})$ $$r_x = r_y$$ $r_x = r_y$ $r_x = \kappa_y$ Axial Coordinate s/L, #### FODO Quadrupole Focusing $(Q = 6.5614 \times 10^{-4})$ $$(\mathcal{L}_{x}) = 0.5011 \times 10^{-10}$$ The matched beam is the most radially compact solution to the envelope equations rendering it highly important for beam transport SM Lund, USPAS, June 2011 # 2D phase-space projections of a matched KV equilibrium beam in a periodic FODO quadrupole transport lattice SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 37 KV model shows that particle orbits in the presence of space-charge can be strongly modified – space charge slows the orbit response: Matched envelope: $$r''_{x}(s) + \kappa_{x}(s)r_{x}(s) - \frac{2Q}{r_{x}(s) + r_{y}(s)} - \frac{\varepsilon_{x}^{2}}{r_{x}^{3}(s)} = 0$$ $$r''_{y}(s) + \kappa_{y}(s)r_{y}(s) - \frac{2Q}{r_{x}(s) + r_{y}(s)} - \frac{\varepsilon_{y}^{2}}{r_{y}^{3}(s)} = 0$$ $$r_{x}(s + L_{p}) = r_{x}(s) \qquad r_{x}(s) > 0$$ $$r_{y}(s + L_{p}) = r_{y}(s) \qquad r_{y}(s) > 0$$ Equation of motion for x-plane "depressed" orbit in the presence of space-charge: $$x''(s) + \kappa_x(s)x(s) - \frac{2Q}{[r_x(s) + r_y(s)]r_x(s)}x(s) = 0$$ All particles have the *same value* of depressed phase advance (similar Eqns in y): $$\sigma_x \equiv \psi_x(s_i + L_p) - \psi_x(s_i) = \varepsilon_x \int_{s_i}^{s_i + L_p} \frac{ds}{r_x^2(s)}$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 38 Contrast: Review, the undepressed particle phase advance calculated in the lectures on Transverse Particle Dynamics The undepressed phase advance is defined as the phase advance of a particle in the absence of space-charge (Q = 0): ◆Denote by $\sigma_{0x}$ to distinguished from the "depressed" phase advance $\sigma_x$ in the presence of space-charge $$w_{0x}'' + \kappa_x w_{0x} - \frac{1}{w_{0x}^3} = 0 w_{0x}(s + L_p) = w_{0x}(s)$$ $$\sigma_{0x} = \int_{s_x}^{s_i + L_p} \frac{ds}{w_{0x}^2}$$ $$w_{0x} > 0$$ This can be equivalently calculated from the matched envelope with Q = 0: $$r_{0x}'' + \kappa_x r_{0x} - \frac{\varepsilon_x^2}{r_{0x}^3} = 0 \qquad r_{0x}(s + L_p) = r_{0x}(s)$$ $$\sigma_{0x} = \varepsilon_x \int_{\varepsilon_x}^{s_i + L_p} \frac{ds}{r_{0x}^2}$$ • Value of $\varepsilon_x$ is arbitrary (answer for $\sigma_{0x}$ is independent) SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 39 Depressed particle *x*-plane orbits within a matched KV beam in a periodic FODO quadrupole channel for the matched beams previously shown Solenoidal Focusing (Larmor frame orbit): FODO Quadrupole Focusing: Lattice Periods ### Depressed particle phase advance provides a convenient measure of space-charge strength For simplicity take (plane symmetry in average focusing and emittance) $$\sigma_{0x} = \sigma_{0y} \equiv \sigma_0$$ $\varepsilon_x = \varepsilon_y \equiv \varepsilon$ Depressed phase advance of particles moving within a matched beam envelope: $$\sigma = \varepsilon \int_{s_i}^{s_i + L_p} \frac{ds}{r_x^2(s)} = \varepsilon \int_{s_i}^{s_i + L_p} \frac{ds}{r_y^2(s)}$$ 1) $$\lim_{Q\to 0} \sigma = \sigma_0$$ Envelope just rescaled amplitude: $r_x^2 = \varepsilon w_{0x}^2$ 2) $$\lim_{\varepsilon \to 0} \sigma = 0$$ Matched envelope exists with $\varepsilon = 0$ Then $\varepsilon = 0$ multiplying phase advance integral Normalized space charge strength $$0 \le \sigma/\sigma_0 \le 1$$ $\frac{0 \leq \sigma/\sigma_0 \leq 1}{\sigma/\sigma_0 + \sigma_0} = \frac{\begin{array}{c} \text{Cold Beam} \\ \text{(space-charge dominated)} \\ \text{(space-charge dominated)} \\ \text{(kinetic dominated)} \\ \text{(kinetic dominated)} \end{array}}$ Cold Beam $$\sigma_0 \to 1$$ Warm Beam (kinetic dominated SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 41 #### For example matched envelope presented earlier: repeat periods Undepressed phase advance: $\sigma_0 = 80^{\circ}$ 4.5 Depressed phase advance: $\sigma = 16^{\circ} \rightarrow \sigma/\sigma_0 = 0.2$ 22.5 Periods for Solenoidal Focusing (Larmor frame orbit): 360 degree phase advance Undepressed (Red) and Depressed (Black) Particle Orbits *x*-plane orbit y = 0 = y'7.5 15 17.5 Lattice Periods 22.5 periods Comment: All particles in the distribution will, of course, always move in response to both applied and self-fields. You cannot turn off space-charge for an undepressed orbit. It is a convenient conceptual construction to help understand focusing properties. SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 42 ### The rms equivalent beam model helps interpret general beam evolution in terms of an "equivalent" local KV distribution Real beams distributions in the lab will not be KV form. But the KV model can be applied to interpret arbitrary distributions via the concept of *rms equivalence*. For the same focusing lattice, replace any beam charge $\rho(x,y)$ density by a uniform density KV beam of the same species (q, m) and energy $(\beta_b)$ in each axial slice (s) using averages calculated from the actual "real" beam distribution with: $\langle \cdots \rangle_{\perp} \equiv rac{\int d^2 x_{\perp} \int d^2 x_{\perp}' \cdots f_{\perp}}{\int d^2 x_{\perp} \int d^2 x_{\perp}' f_{\perp}} \qquad f_{\perp} = \ ext{real distribution}$ rms equivalent beam (identical 1st and 2nd order moments): | Quantity | KV Equiv. | Calculated from Distribution | | |--------------------------|---------------|----------------------------------------------------------------------------------------------------|----| | Perveance | Q | $= q^2 \int d^2x_{\perp} \int d^2x'_{\perp} f_{\perp} / [2\pi\epsilon_0 \gamma_b^3 \beta_b^2 c^2]$ | ] | | x-Env Rad | $r_x$ | $=2\langle x^2\rangle_{\perp}^{1/2}$ | | | y-Env Rad | $r_y$ | $=2\langle y^2\rangle_{\perp}^{1/2}$ | | | x-Env Angle | $r_x'$ | $= 2\langle xx'\rangle_{\perp}/\langle x^2\rangle_{\perp}^{1/2}$ | | | y-Env Angle | $r'_y$ | $= 2\langle yy'\rangle_{\perp}/\langle y^2\rangle_{\perp}^{1/2}$ | | | x-Emittance | $arepsilon_x$ | $=4[\langle x^2\rangle_{\perp}\langle x'^2\rangle_{\perp}^{-}-\langle xx'\rangle_{\perp}]^{1/2}$ | | | y-Emittance | $arepsilon_y$ | $=4[\langle y^2\rangle_{\perp}\langle y'^2\rangle_{\perp}-\langle yy'\rangle_{\perp}]^{1/2}$ | | | SM Lund, USPAS, June 201 | 11 | Transverse Equilibrium Distributions 4 | 13 | Comments on rms equivalent beam concept: - The emittances will generally evolve in s - Means that the equivalence must be recalculated in every slice as the emittances evolve - For reasons to be analyzed later (see S.M. Lund lectures on Kinetic Stability of Beams), this evolution is often small - Concept is highly useful - KV equilibrium properties well understood and are approximately correct to model lowest order "real" beam properties - See, Reiser, Theory and Design of Charged Particle Beams (1994, 2008) for a detailed and instructive discussion of rms equivalence Sacherer expanded the concept of rms equivalency by showing that the equivalency works exactly for beams with elliptic symmetry space-charge [Sacherer, IEEE Trans. Nucl. Sci. 18, 1101 (1971), J.J. Barnard, Intro. Lectures] For any beam with elliptic symmetry charge density in each transverse slice: $$\rho = \rho \left( \frac{x^2}{r_x^2} + \frac{y^2}{r_y^2} \right)$$ $$\langle x \frac{\partial \phi}{\partial x} \rangle_{\perp} = -\frac{\lambda}{4\pi\epsilon_0} \frac{r_x}{r_x + r_y}$$ the KV envelope equations $$r_x''(s) + \kappa_x(s)r_x(s) - \frac{2Q}{r_x(s) + r_y(s)} - \frac{\varepsilon_x^2(s)}{r_x^3(s)} = 0$$ $$r_y''(s) + \kappa_y(s)r_y(s) - \frac{2Q}{r_x(s) + r_y(s)} - \frac{\varepsilon_y^2(s)}{r_y^3(s)} = 0$$ remain valid when (averages taken with the full distribution): $$Q = \frac{q\lambda}{2\pi\epsilon_0 m \gamma_b^3 \beta_b^2 c^2} = \text{const} \qquad \lambda = q \int d^2 x_\perp \ \rho = \text{const}$$ $$r_x = 2\langle x^2 \rangle_\perp^{1/2} \qquad \varepsilon_x = 4[\langle x^2 \rangle_\perp \langle x'^2 \rangle_\perp - \langle xx' \rangle_\perp^2]^{1/2}$$ $$r_y = 2\langle y^2 \rangle_\perp^{1/2} \qquad \varepsilon_y = 4[\langle y^2 \rangle_\perp \langle y'^2 \rangle_\perp - \langle yy' \rangle_\perp^2]^{1/2}$$ The emittances may evolve in s under this model (see SM Lund lectures on Transverse Kinetic Stability) SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 45 ### Interpretation of the dimensionless perveance Q The dimensionless perveance: $$Q = \frac{q\lambda}{2\pi\epsilon_0 m\gamma_b^3\beta_b^2c^2} = \mathrm{const}$$ $$Q = \frac{q\lambda}{2\pi\epsilon_0 m\gamma_b^3 \beta_b^2 c^2} = \text{const}$$ $$\lambda = q\hat{n}\pi r_x r_y = \text{line-charge} = \text{const}$$ $$\hat{n} = \text{beam density}$$ - Scales with size of beam ( $\lambda$ ), but typically has small characteristic values even for beams with high space charge intensity ( $\sim 10^{-4}$ to $10^{-8}$ common) - Even small values of Q can matter depending on the relative strength of other effects from applied focusing forces, thermal defocusing, etc. Can be expressed equivalently in several ways: $$Q = \frac{q\lambda}{2\pi\epsilon_0 m\gamma_b^3 \beta_b^2 c^2} = \frac{qI_b}{2\pi\epsilon_0 m\gamma_b^3 \beta_b^3 c^3} = \frac{2}{(\gamma_b \beta_b)^3} \frac{I_b}{I_A}$$ $$=\frac{q^2\pi r_x r_y \hat{n}}{2\pi\epsilon_0 m \gamma_b^3 \beta_b^3 c^3} = \frac{\hat{\omega}_p^2 r_x r_y}{2\gamma_b^3 \beta_b^2 c^2} \qquad I_b = \lambda \beta_b c = \text{beam current}$$ $$I_A = 4\pi\epsilon_0 m c^3/q = \text{Alfven current}$$ $$\hat{\omega}_p = \sqrt{q^2 \hat{n}/(m\epsilon_0)} = \text{plasma freq.}$$ • Forms based on $\lambda$ , $I_b$ generalize to nonuniform density beams SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 46 To better understand the perveance Q, consider a round, uniform density beam with $$r_x = r_y = r_b$$ then the solution for the potential within the beam reduces: $$\phi = -\frac{\lambda}{2\pi\epsilon_0} \left[ \frac{x^2}{(r_x + r_y)r_x} + \frac{y^2}{(r_x + r_y)r_y} \right] + \text{const}$$ $$= -\frac{\lambda}{4\pi\epsilon_0} \frac{r^2}{r_b^2} + \text{const}$$ $$\Rightarrow \Delta \phi = \phi(r=0) - \phi(r=r_b) = \frac{\lambda}{4\pi\epsilon_0}$$ for potential drop across the beam If the beam is also nonrelativistic, then the axial kinetic energy $\mathcal{E}_b$ is $$\mathcal{E}_b = (\gamma_b - 1)mc^2 \simeq \frac{1}{2}m\beta_b^2 c^2$$ and the perveance can be alternatively expressed as $$Q = \frac{q\lambda}{2\pi\epsilon_0 m\gamma_b^3 \beta_b^2 c^2} \simeq \frac{q\Delta\phi}{\mathcal{E}_b}$$ ◆ Perveance can be interpreted as space-charge potential energy difference across beam relative to the axial kinetic energy Further comments on the KV equilibrium: Distribution Structure KV equilibrium distribution: $f_{\perp} \sim \delta[\text{Courant-Snyder invariants}]$ Forms a highly singular hyper-shell in 4D phase-space Schematic: - Singular distribution has large "Free-Energy" to drive many instabilities - Low order envelope modes are physical and highly important (see: lectures by S.M. Lund on Centroid and Envelope Descriptions of Beams) - Perturbative analysis shows strong collective instabilities - Hofmann, Laslett, Smith, and Haber, Part. Accel. 13, 145 (1983) - Higher order instabilities (collective modes) have unphysical aspects due to (delta-function) structure of distribution and must be applied with care (see: lectures by S.M. Lund on Kinetic Stability of Beams) - Instabilities can cause problems if the KV distribution is employed as an initial beam state in self-consistent simulations SM Lund, USPAS, June 2011 Preview: lectures on Centroid and Envelope Descriptions of Beams: Instability bands of the KV envelope equation are well understood in periodic focusing channels and must be avoided in machine operation SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 49 #### Further comments on the KV equilibrium: 2D Projections All 2D projections of the KV distribution are uniformly filled ellipses - Not very different from what is often observed in experimental measurements and self-consistent simulations of stable beams with strong space-charge - ◆ Falloff of distribution at "edges" can be rapid, but smooth, for strong space-charge SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 50 Further comments on the KV equilibrium: Angular Spreads: Coherent and Incoherent Angular spreads within the beam: #### Coherent (flow): #### <u>Incoherent (temperature):</u> $$\langle x' \rangle_{\mathbf{x}'_{\perp}} \equiv \frac{\int d^2 x'_{\perp} \ x'_{\perp} \ f_{\perp}}{\int d^2 x'_{\perp} \ f_{\perp}} = r'_x \frac{x}{r_x} \qquad \langle (x' - r'_x x / r_x)^2 \rangle_{\mathbf{x}'_{\perp}} = \frac{\varepsilon_x^2}{2r_x^2} \left( 1 - \frac{x^2}{r_x^2} - \frac{y^2}{r_y^2} \right)$$ $$\langle x' \rangle_{x',y'} \qquad \qquad T_x \qquad \widehat{T}_x \equiv \frac{\varepsilon_x^2}{2r_x^2}$$ - ◆ Coherent flow required for periodic focusing to conserve charge - ◆ Temperature must be zero at the beam edge since the distribution edge is sharp - Parabolic temperature profile is consistent with linear grad P pressure forces in a fluid model interpretation of the (kinetic) KV distribution ### Further comments on the KV equilibrium: The KV distribution is the *only* exact equilibrium distribution formed from Courant-Snyder invariants of linear forces valid for periodic focusing channels: - Low order properties of the distribution are physically appealing - ◆Illustrates relevant Courant-Snyder invariants in simple form - Later arguments demonstrate that these invariants should be a reasonable approximation for beams with strong space charge - ◆KV distribution does not have a 3D generalization [see F. Sacherer, Ph.d. thesis, 1968] Strong Vlasov instabilities associated with the KV model render the distribution inappropriate for use in evaluating machines at high levels of detail: - Instabilities are not all physical and render interpretation of results difficult - Difficult to separate physical from nonphysical effects in simulations Possible Research Problem (unsolved in 40+ years!): Can an *exact* Vlasov equilibrium be constructed for a *smooth* (non-singular), nonuniform density distribution in a linear, periodic focusing channel? - Not clear what invariants can be used or if any can exist - Nonexistence proof would also be significant - Recent perturbation theory and simulation work suggest prospects - Self-similar classes of distributions SM Lund, USPAS, June 2011 Lack of a smooth equilibrium does not imply that real machines cannot work! SM Lund, USPAS, June 2011 Because of a lack of theory for a smooth, self-consistent distribution that would be more physically appealing than the KV distribution we will examine smooth distributions in the idealized continuous focusing limit (after an analysis of the continuous limit of the KV theory): - ◆ Allows more classic "plasma physics" like analysis - Illuminates physics of intense space charge - Lack of continuous focusing in the laboratory will prevent over generalization of results obtained A 1D analog to the KV distribution called the "Neuffer Distribution" is useful in longitudinal physics - ◆Based on linear forces with a "g-factor" model - Distribution not singular in 1D and is fully stable in continuous focusing - ◆ See: J.J. Barnard, lectures on Longitudinal Physics SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 53 Transverse Equilibrium Distributions ### Appendix A: Self-Fields of a Uniform Density Elliptical Beam in Free-Space #### 1) Direct Proof: The solution to the 2D Poisson equation: $$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\phi = \begin{cases} -\frac{\lambda}{\pi\epsilon_0 r_x r_y}, & \text{if } \frac{x^2}{r_x^2} + \frac{y^2}{r_y^2} < 1\\ 0, & \text{if } \frac{x^2}{r_x^2} + \frac{y^2}{r_y^2} > 1 \end{cases}$$ $$\lim_{r \to \infty} \frac{\partial \phi}{\partial r} \sim \frac{\lambda}{2\pi\epsilon_0 r}$$ has been formally constructed as: - Solutions date from early Newtonian gravitational field solutions of stars with ellipsoidal density - See Landau and Lifshitz, Classical Theory of Fields for a simple presentation $$\phi = -\frac{\lambda}{4\pi\epsilon_0} \left\{ \int_0^{\xi} \frac{ds}{\sqrt{(r_x^2 + s)(r_y^2 + s)}} + \int_{\xi}^{\infty} \frac{ds}{\sqrt{(r_x^2 + s)(r_y^2 + s)}} \left( \frac{x^2}{r_x^2 + s} + \frac{y^2}{r_y^2 + s} \right) \right\}$$ $$+ \cosh$$ $$\xi = 0 \text{ when } x^2/r_x^2 + y^2/r_y^2 < 1$$ $$\xi \text{ root of: } \frac{x^2}{r_x^2 + \xi} + \frac{y^2}{r_y^2 + \xi} = 1, \text{ when } \frac{x^2}{r_x^2} + \frac{y^2}{r_y^2} > 1$$ $$\mathbf{A1}$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions We will A) demonstrate that this solution works and then B) simplify the result. A) Verify by direct substitution: $$\frac{\partial \phi}{\partial x} = -\frac{\lambda}{4\pi\epsilon_0} \left\{ \int_{\xi}^{\infty} \frac{ds}{\sqrt{(r_x^2 + s)(r_y^2 + s)}} \left( \frac{2x}{r_x^2 + s} \right) - \frac{1}{\sqrt{(r_x^2 + s)(r_y^2 + s)}} \left[ 1 - \frac{x^2}{r_x^2 + \xi} - \frac{y^2}{r_y^2 + \xi} \right] \frac{\partial \xi}{\partial x} \right\}$$ if $$\xi = 0 \implies 1 = \frac{x^2}{r_x^2 + \xi} + \frac{y^2}{r_y^2 + \xi}$$ if $\xi = 0 \implies \frac{d\xi}{dx} = 0$ In either case the 2<sup>nd</sup> term above vanishes Giving: SM Lund, USPAS, June 2011 $$\begin{split} \frac{\partial \phi}{\partial x} &= -\frac{\lambda}{2\pi\epsilon_0} \int_{\xi}^{\infty} \frac{ds}{\sqrt{(r_x^2 + s)(r_y^2 + s)}} \left(\frac{x}{r_x^2 + s}\right) \\ \frac{\partial \phi}{\partial y} &= -\frac{\lambda}{2\pi\epsilon_0} \int_{\xi}^{\infty} \frac{ds}{\sqrt{(r_x^2 + s)(r_y^2 + s)}} \left(\frac{y}{r_y^2 + s}\right) \end{split}$$ Differentiate again and apply the chain rule: A2 $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\phi = -\frac{\lambda}{2\pi\epsilon_0} \left\{ \int_{\xi}^{\infty} \frac{ds}{\sqrt{(r_x^2 + s)(r_x^2 + s)}} \left(\frac{1}{r_x^2 + s} + \frac{1}{r_y^2 + s}\right) \right\}$ $-\frac{1}{\sqrt{(r^2+s)(r^2+s)}} \left[ \frac{x\partial \xi/\partial x}{r_x^2+\xi} + \frac{y\partial \xi/\partial y}{r_y^2+\xi} \right]$ Must show that the right hand side reduces to the required elliptical form for a uniform density beam for: Case 1: Exterior $$\frac{x^2}{r_x^2 + \xi} + \frac{y^2}{r_y^2 + \xi} = 1$$ Case 2: Interior $\xi = 1$ Case 1: Exterior $$\frac{x^2}{r_x^2} + \frac{y^2}{r_y^2} > 1$$ Differentiate: $\frac{x^2}{r_z^2 + \xi} + \frac{y^2}{r_z^2 + \xi} = 1$ $$\implies \frac{\partial \xi}{\partial x} = \frac{2x}{(r_x^2 + \xi)} \frac{1}{\left[\frac{x^2}{(r_x^2 + \xi)^2} + \frac{y^2}{(r_y^2 + \xi)^2}\right]} \qquad \text{+ analogous eqn in } y$$ SM Lund, USPAS, June 2011 Using these results: $$\frac{x\partial \xi/\partial x}{r_x^2 + \xi} + \frac{y\partial \xi/\partial y}{r_y^2 + \xi} = 2\left[\frac{x^2}{(r_x^2 + \xi)^2} + \frac{y^2}{(r_y^2 + \xi)^2}\right] \frac{1}{\left[\frac{x^2}{(r_x^2 + \xi)^2} + \frac{y^2}{(r_x^2 + \xi)^2}\right]} = 2$$ Also, need to calculate integrals like: $$w^2 = r_x^2 + \tilde{\xi}$$ $$I_x(\xi) \equiv \int_{\xi}^{\infty} \frac{d\tilde{\xi}}{[(r_x^2 + \tilde{\xi})(r_y^2 + \tilde{\xi})]^{1/2}} \frac{1}{r_x^2 + \tilde{\xi}} = \int_{\sqrt{r_x^2 + \xi}}^{\infty} \frac{dw}{(r_x^2 - r_y^2 + w^2)^{3/2}}$$ + analogous integrals in y This integral can be done using tables or symbolic programs like Mathematica: $$I_x(\xi) = \frac{2w}{(r_x^2 - r_y^2)\sqrt{r_x^2 - r_y^2 + w^2}} \bigg|_{w = \sqrt{r_x^2 + \xi}}^{w \to \infty} = \frac{2}{r_x^2 - r_y^2} + \frac{2\sqrt{r_y^2 + \xi}}{(r_x^2 - r_y^2)\sqrt{r_x^2 + \xi}}$$ Applying this integral and the analogous $I_y(\xi)$ $$\int_0^\infty \frac{ds}{\sqrt{(r_x^2 + s)(r_y^2 + s)}} \left[ \frac{1}{r_x^2 + s} + \frac{1}{r_y^2 + s} \right] = I_x(\xi) + I_y(\xi)$$ $$= \frac{2}{r_x^2 - r_y^2} \left( \frac{\sqrt{r_x^2 + \xi}}{\sqrt{r_y^2 + \xi}} - \frac{\sqrt{r_y^2 + \xi}}{\sqrt{r_x^2 + \xi}} \right) = \frac{2}{\sqrt{(r_x^2 + \xi)(r_y^2 + \xi)}} \mathbf{A4}$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 3 Applying both of these results, we obtain: $$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\phi = -\frac{\lambda}{2\pi\epsilon_0} \left\{ \frac{2}{\sqrt{(r_x^2 + \xi)(r_y^2 + \xi)}} - \frac{2}{\sqrt{(r_x^2 + \xi)(r_y^2 + \xi)}} \right\}$$ = 0 Thereby verifying the exterior case! Case 2: Interior $$\frac{x^2}{r_x^2} + \frac{y^2}{r_y^2} < 1$$ $$\xi = 0 \implies \frac{x\partial\xi/\partial x}{r_x^2 + \xi} + \frac{y\partial\xi/\partial y}{r_y^2 + \xi} = 0$$ The integrals defined and calculated above give in this case: $$I_x(\xi = 0) = \frac{2}{(r_x + r_y)r_x}$$ $I_y(\xi = 0) = \frac{2}{(r_x + r_y)r_y}$ Applying both of these results, we obtain: $$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\phi = -\frac{\lambda}{2\pi\epsilon_0} \left\{\frac{2}{r_x r_y} - 0\right\} = -\frac{\lambda}{\epsilon_0 \pi r_x r_y} = -\frac{q\hat{n}}{\epsilon_0}$$ Thereby verifying the interior case! A5 SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions Verify that the correct large-*r* limit of the potential is obtained outside the beam: $$-\frac{\partial \phi}{\partial x} = \frac{\lambda}{2\pi\epsilon_0} x I_x(\xi)$$ $$-\frac{\partial \phi}{\partial y} = \frac{\lambda}{2\pi\epsilon_0} y I_y(\xi)$$ $$r \text{ large} \Longrightarrow \xi \text{ large}$$ $$\lim_{r \to \infty} I_x(\xi) = \frac{1}{\xi} = \frac{1}{r^2}$$ $$\lim_{r \to \infty} I_y(\xi) = \frac{1}{\xi} = \frac{1}{r^2}$$ Thue $$\lim_{\substack{r \to \infty}} -\frac{\partial \phi}{\partial x} = -\frac{\lambda}{2\pi\epsilon_0} \frac{x}{r^2}$$ $$\lim_{\substack{r \to \infty}} -\frac{\partial \phi}{\partial y} = -\frac{\lambda}{2\pi\epsilon_0} \frac{y}{r^2} \implies \lim_{\substack{r \to \infty}} -\frac{\partial \phi}{\partial r} = \frac{\lambda}{2\pi\epsilon_0 r}$$ Thereby verifying the exterior limit! Together, these results fully verify that the integral solution satisfies the Poisson equation describing a uniform density elliptical beam in free space Finally, it is useful to apply the steps in the verification to derive a simplified formula for the potential within the beam where: $$\frac{x^2}{r_x^2} + \frac{y^2}{r_y^2} < 1, \quad \xi = 0$$ This gives: $$\phi = -\frac{\lambda}{4\pi\epsilon_0} \left\{ x^2 I_x(\xi = 0) + y^2 I_y(\xi = 0) \right\} + \text{const}$$ $$= -\frac{\lambda}{4\pi\epsilon_0} \left\{ \frac{2x^2}{r_x(r_x + r_y)} + \frac{2y^2}{r_y(r_x + r_y)} \right\} + \text{const}$$ $$\phi = -\frac{\lambda}{2\pi\epsilon_0} \left\{ \frac{x^2}{r_x(r_x + r_y)} + \frac{y^2}{r_y(r_x + r_y)} \right\} + \text{const}$$ - This formula agrees with the simple case of an axisymmetric beam with $r_x = r_u = r_b$ - Discussed further in a simple homework problem A7 A6 #### 2) Indirect Proof: - More efficient method - Steps useful for other constructions including moment calculations - See: J.J. Barnard, Introductory Lectures Density has elliptical symmetry: $$n(x,y) = n\left(\frac{x^2}{r_x^2} + \frac{y^2}{r_y^2}\right)$$ function n(argument) arbitrary The solution to the 2D Poisson equation: $$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\phi = -\frac{qn}{\epsilon_0}$$ in free-space is then given by $$\phi = -\frac{qr_x r_y}{4\epsilon_0} \int_0^\infty d\xi \, \frac{\eta(\chi)}{\sqrt{r_x^2 + \xi} \sqrt{r_y^2 + \xi}} \qquad \chi \equiv \frac{x^2}{r_x^2 + \xi} + \frac{y^2}{r_y^2 + \xi}$$ $$\chi \equiv \frac{x^2}{r_x^2 + \xi} + \frac{y^2}{r_y^2 + \xi}$$ where $\eta(\chi)$ is a function defined such that $$n(x,y) = \frac{d\eta(\chi)}{d\chi} \Big|_{\xi=0}$$ • Can show that a choice of $\eta$ realizable for any elliptical symmetry n SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions Prove that the solution is valid by direct substitution $$\chi = \frac{x^2}{r_x^2 + \xi} + \frac{y^2}{r_y^2 + \xi} \implies \frac{\frac{\partial \chi}{\partial x} = \frac{2x}{r_x^2 + \xi}}{\frac{\partial \chi}{\partial y} = \frac{2y}{r_y^2 + \xi}} \qquad \frac{\frac{\partial^2 \chi}{\partial x^2} = \frac{2}{r_x^2 + \xi}}{\frac{\partial^2 \chi}{\partial y^2} = \frac{2}{r_y^2 + \xi}}$$ Substitute in Poisson's equation, use the chain rule, and apply results above: $$\begin{split} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\phi &= \\ &- \frac{qr_xr_y}{4\epsilon_0} \int_0^\infty \! d\xi \, \frac{\left(\frac{d^2\eta}{d\chi^2}\right) \left(\frac{4x^2}{(r_x^2 + \xi)^2} + \frac{4y^2}{(r_y^2 + \xi)^2}\right) + \left(\frac{d\eta}{d\chi}\right) \left(\frac{2}{r_x^2 + \xi} + \frac{2}{r_y^2 + \xi}\right)}{\sqrt{r_x^2 + \xi} \sqrt{r_y^2 + \xi}} \end{split}$$ $$d\chi = -\left[\frac{x^2}{(r_x^2 + \xi)^2} + \frac{y^2}{(r_y^2 + \xi)^2}\right] d\xi$$ Using this result the first integral becomes: $$\int_0^\infty d\xi \; \frac{\left(\frac{d^2\eta}{d\chi^2}\right) \left(\frac{4x^2}{(r_x^2+\xi)^2} + \frac{4y^2}{(r_y^2+\xi)^2}\right)}{\sqrt{r_x^2 + \xi} \sqrt{r_y^2 + \xi}} = -4 \int_0^\infty d\xi \; \frac{\frac{d\eta^2}{d\chi^2} \frac{d\chi}{d\xi}}{\sqrt{r_x^2 + \xi} \sqrt{r_y^2 + \xi}}$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions $$-4\int_{0}^{\infty} d\xi \, \frac{\frac{d\eta^{2}}{d\chi^{2}} \frac{d\chi}{d\xi}}{\sqrt{r_{x}^{2} + \xi} \sqrt{r_{y}^{2} + \xi}} = -4\int_{0}^{\infty} d\xi \, \frac{\frac{d}{d\xi} \left(\frac{d\eta}{d\chi}\right)}{\sqrt{r_{x}^{2} + \xi} \sqrt{r_{y}^{2} + \xi}}$$ $$= -4\int_{0}^{\infty} d\xi \, \frac{d}{d\xi} \left[\frac{\frac{d\eta}{d\chi}}{\sqrt{r_{x}^{2} + \xi} \sqrt{r_{y}^{2} + \xi}}\right] + 4\int_{0}^{\infty} d\xi \, \frac{d\eta}{d\chi} \frac{d}{d\xi} \frac{1}{\sqrt{r_{x}^{2} + \xi} \sqrt{r_{y}^{2} + \xi}}$$ $$= -4\left[\frac{\frac{d\eta}{d\chi}}{\sqrt{r_{x}^{2} + \xi} \sqrt{r_{y}^{2} + \xi}}\right]_{\xi=0}^{\xi\to\infty} - 2\int_{0}^{\infty} d\xi \, \frac{\frac{d\eta}{d\chi} \left(\frac{1}{r_{x}^{2} + \xi} + \frac{1}{r_{y}^{2} + \xi}\right)}{\sqrt{r_{x}^{2} + \xi} \sqrt{r_{y}^{2} + \xi}}$$ in first term, upper limit vanishes since denominator $\sim \xi \to \infty$ $$=\frac{4}{r_x r_y} \left. \frac{d\eta}{d\chi} \right|_{\xi=0} - \left[ 2 \int_0^\infty d\xi \, \frac{\frac{d\eta}{d\chi} \left( \frac{1}{r_x^2 + \xi} + \frac{1}{r_y^2 + \xi} \right)}{\sqrt{r_x^2 + \xi} \sqrt{r_y^2 + \xi}} \right] \quad \text{Term cancels 2}$$ $$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\phi = -q\frac{r_x r_y}{4\epsilon_0} \frac{4}{r_x r_y} \left. \frac{d\eta(\chi)}{d\chi} \right|_{\epsilon=0} = -\frac{q}{\epsilon_0} n(x,y)$$ Which verifies the ansatz. A10 SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions For a uniform density ellipse, we take: $$\eta(\chi) = \frac{\lambda}{q\pi r_x r_y} \begin{cases} \chi, & \text{if } \chi < 1\\ 1, & \text{if } \chi > 1 \end{cases} \rightarrow \frac{d\eta(\chi)}{d\chi} = \begin{cases} \frac{\lambda}{q\pi r_x r_y}, & \text{if } \chi < 1\\ 0, & \text{if } \chi > 1 \end{cases}$$ $$\left| \frac{d\eta(\chi)}{d\chi} \right|_{\xi=0} = \begin{cases} \frac{\lambda}{q\pi r_x r_y}, & \text{if } \chi|_{\xi=0} < 1\\ 0, & \text{if } \chi|_{\xi=0} > 1 \end{cases} = \begin{cases} \frac{\lambda}{q\pi r_x r_y}, & \text{if } x^2/r_x^2 + y^2/r_y^2 < 1\\ 0, & \text{if } x^2/r_x^2 + y^2/r_y^2 > 1 \end{cases}$$ Therefore, for this choice of $$\left.\frac{d\eta(\chi)}{d\chi}\right|_{\xi=0} = n(x,y) \ \text{ for a uniform density elliptical beam} \\ \text{ with radii } r_x,\, r_y \text{ and density } \lambda/(q\pi r_x r_y)$$ Apply these results to calculate $$\phi = -\frac{qr_x r_y}{4\epsilon_0} \int_0^\infty d\xi \, \frac{\eta(\chi)}{\sqrt{r_x^2 + \xi} \sqrt{r_y^2 + \xi}}$$ $$\chi = \frac{x^2}{r_x^2 + \xi} + \frac{y^2}{r_y^2 + \xi} \implies \text{if } \frac{x^2}{r_x^2} + \frac{y^2}{r_y^2} < 1, \text{ then}$$ $$\gamma < 1 \text{ for all } 0 < \xi < \infty$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions A11 Then: $$\phi = -\frac{qr_x r_y}{4\epsilon_0} \int_0^\infty d\xi \, \frac{\lambda}{q\pi r_x r_y} \left[ \frac{x^2}{(r_x^2 + \xi)^{3/2} (r_y^2 + \xi)^{1/2}} + \frac{y^2}{(r_x^2 + \xi)^{1/2} (r_y^2 + \xi)^{3/2}} \right]$$ Using Mathematica or integral tables $$\int_0^\infty d\xi \, \frac{1}{(r_x^2 + \xi)^{3/2} (r_y^2 + \xi)^{1/2}} = \frac{2}{r_x (r_x + r_y)}$$ $$\int_0^\infty d\xi \, \frac{1}{(r_x^2 + \xi)^{1/2} (r_y^2 + \xi)^{3/2}} = \frac{2}{r_y (r_x + r_y)}$$ Showing that: $$\phi = -\frac{\lambda}{2\pi\epsilon_0} \left[ \frac{x^2}{r_x(r_x + r_y)} + \frac{y^2}{r_y(r_x + r_y)} \right] + \text{const}$$ since an overall constant can always be added to the potential (the integral had a reference choice $\phi(x=y=0)=0$ built in. A12 SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions Transverse Equilibrium Distributions The steps introduced in this proof can also be simply extended to show that • For steps, see J.J. Barnard, Introductory Lectures $$\langle x \frac{\partial \phi}{\partial x} \rangle_{\perp} = -\frac{\lambda}{4\pi\epsilon_0} \frac{r_x}{r_x + r_y}$$ $$\langle y \frac{\partial \phi}{\partial y} \rangle_{\perp} = -\frac{\lambda}{4\pi\epsilon_0} \frac{r_y}{r_x + r_y}$$ $$\lambda \equiv q \int d^2 x_{\perp} n$$ $$r_x \equiv \langle x^2 \rangle_{\perp}^{1/2}$$ $$r_y \equiv \langle y^2 \rangle_{\perp}^{1/2}$$ for any elliptic symmetry density profile $$n(x,y) = \operatorname{func}\left(\frac{x^2}{r_x^2} + \frac{y^2}{r_y^2}\right)$$ In the introductory lectures, these results were applied to show that the KV envelope equations with evolving emittances can be applied to elliptic symmetry beams. ◆ Result first shown by Sacherer, IEEE Trans. Nuc. Sci. 18, 1105 (1971) A13 SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions Appendix B: Canonical Transformation of the KV Distribution The single-particle equations of motion: $$x''(s) + \left\{ \kappa_x(s) - \frac{2Q}{[r_x(s) + r_y(s)]r_x(s)} \right\} x(s) = 0$$ $$y''(s) + \left\{ \kappa_y(s) - \frac{2Q}{[r_x(s) + r_y(s)]r_y(s)} \right\} y(s) = 0$$ can be derived from the Hamiltonian: $$\begin{split} H_{\perp}(x,y,x',y';s) &= \frac{1}{2}x^{'2} + \left[\kappa_{x}(s) + \frac{2Q}{r_{x}(s)[r_{x}(s) + r_{y}(s)]}\right]\frac{x^{2}}{2} \\ &+ \frac{1}{2}y^{'2} + \left[\kappa_{y}(s) + \frac{2Q}{r_{y}(s)[r_{x}(s) + r_{y}(s)]}\right]\frac{y^{2}}{2} \end{split}$$ using: $$\frac{d}{ds}\mathbf{x}_{\perp} = \frac{\partial H_{\perp}}{\partial \mathbf{x}'_{\perp}} \qquad \qquad \frac{d}{ds}\mathbf{x}'_{\perp} = -\frac{\partial H_{\perp}}{\partial \mathbf{x}_{\perp}}$$ **B**1 Perform a canonical transform to new variables X,Y, X',Y' using the generating function $$F_2(x, y, X', Y') = \frac{x}{w_x} \left[ X' + \frac{1}{2} x w_x' \right] + \frac{y}{w_y} \left[ y' + \frac{1}{2} y w_y' \right]$$ Then we have from Canonical Transform theory (see: Goldstein, Classical Mechanics, 2<sup>nd</sup> Edition, 1980) $$X = \frac{\partial F_2}{\partial X'} = \frac{x}{w_x} \qquad x' = \frac{\partial F_2}{\partial x} = \frac{1}{w_x} (X' + xw_x')$$ $$Y = \frac{\partial F_2}{\partial Y'} = \frac{y}{w_y} \qquad y' = \frac{\partial F_2}{\partial y} = \frac{1}{w_y} (Y' + yw_y')$$ which give #### Transform $$X = x/w_x X' = w_x x' - xw'_x$$ $$Y = y/w_y Y' = w_y y' - yw'_y$$ **Inverse Transform** $$X = x/w_x$$ $X' = w_x x' - x w'_x$ $x = w_x X$ $x' = X'/w_x + w'_x X$ $Y = y/w_y$ $Y' = w_y y' - y w'_y$ $y = w_y Y$ $y' = Y'/w_y + w'_y Y$ SM Lund, USPAS, June 2011 The structure of the canonical transform results in transformed equations of motion in proper canonical form: $$ilde{H}_{\perp} = H_{\perp} + rac{\partial F_2}{\partial s}$$ $ilde{H}_{\perp} = ilde{H}_{\perp}(X,Y,X',Y';s)$ $$\tilde{H} = \frac{1}{2w_x^2}X'^2 + \frac{1}{2w_y^2}Y'^2 + \frac{1}{2w_x^2}X^2 + \frac{1}{2w_y^2}Y^2$$ $$\frac{d}{ds}X = \frac{\partial \tilde{H}_{\perp}}{\partial X'} = \frac{X'}{w_x^2} \qquad \frac{d}{ds}X' = -\frac{\partial \tilde{H}_{\perp}}{\partial X} = -\frac{X}{w_x^2}$$ $$\frac{d}{ds}Y = \frac{\partial \tilde{H}_{\perp}}{\partial Y'} = \frac{Y'}{w_y^2} \qquad \frac{d}{ds}Y' = -\frac{\partial \tilde{H}_{\perp}}{\partial Y} = -\frac{Y}{w_y^2}$$ - Caution: X' merely denotes the conjugate variable to X: $\frac{d}{ds}X \neq X'$ X and X' both have dimensions configuration. - ◆ X and X' both have dimensions sqrt(meters) - Equations of motion can be verified directly from transform equations (see problem sets) - Transformed Hamiltonian $\hat{H}_{\perp}$ is explicitly s dependent due to $w_{\perp}x$ and $w_{\perp}y$ lattice functions SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 69 Transverse Equilibrium Distributions **B**3 Following Davidson (Physics of Nonneutral Plasmas), the equations of motion $$\frac{d}{ds}X' + \frac{1}{w_x^2}X = 0$$ $$\frac{d}{ds}X' = -\frac{X}{w_x^2}$$ $$\frac{d}{ds}Y' + \frac{1}{w_y^2}Y = 0$$ $$\frac{d}{ds}Y' = -\frac{Y}{w_y^2}$$ have a psudo-harmonic oscillator solution $$X(s) = X_i \cos \psi_x(s) + X_i' \sin \psi_x(s)$$ $$\psi_x(s) = \int_{s_i}^s \frac{d\tilde{s}}{w_x^2(\tilde{s})} \qquad \qquad \begin{aligned} X_i &= \text{const} \\ X_i' &= \text{const} \end{aligned} \quad \text{set by initial conditions}$$ This explicitly verifies the simple, symmetrical form of the Courant-Snyder invariants in the transformed variables: $$X^{2} + X'^{2} = \left(\frac{x}{w_{x}}\right)^{2} + \left(w_{x}x' - xw'_{x}\right)^{2} = \text{const}$$ $$Y^{2} + Y'^{2} = \left(\frac{y}{w_{y}}\right)^{2} + \left(w_{y}y' - yw'_{y}\right)^{2} = \text{const}$$ **B4** SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions The canonical transforms render the KV distribution much simpler to express. First examine how phase-space areas transform: • The property dx dy dx' dy' = dX dY dX' dY' is a consequence of canonical transforms preserving phase-space area Because phase space area is conserved, the distribution in transformed phasespace variables is identical to the original distribution. Therefore, for the KV distribution $$f_{\perp} = \frac{\lambda}{q\pi^{2}\varepsilon_{x}\varepsilon_{y}}\delta\left[\left(\frac{x}{r_{x}}\right)^{2} + \left(\frac{r_{x}x' - r'_{x}x}{\varepsilon_{x}}\right)^{2} + \left(\frac{y}{r_{y}}\right)^{2} + \left(\frac{r_{y}y' - r'_{y}y}{\varepsilon_{y}}\right)^{2} - 1\right]$$ $$= \frac{\lambda}{q\pi^{2}\varepsilon_{x}\varepsilon_{y}}\delta\left[\frac{X^{2} + X'^{2}}{\varepsilon_{x}} + \frac{Y^{2} + Y'^{2}}{\varepsilon_{y}} - 1\right] \qquad r_{x} = \sqrt{\varepsilon_{x}}w_{x}$$ - Transformed form simpler and more symmetrical - Exploited to simplify calculation of distribution moments and projections Density Calculation: As a first example application of the canonical transform, prove that the density projection of the KV distribution is a uniform density ellipse. Doing so will prove the consistency of the KV equilibrium: - If density projection is as assumed then the Courant-Snyder invariants are valid - Steps used can be applied to calculate other moments/projections - Steps can be applied to continuous focusing without using the transformations $$n(x,y) = \int dx'dy' f_{\perp} = \int \frac{dX'dY'}{w_x w_y} f_{\perp}$$ $$r_x = \sqrt{\varepsilon_x} w_x$$ $U_x = X'/\sqrt{\varepsilon_x}$ $dU_x dU_y = \frac{dX'dY'}{\sqrt{\varepsilon_x \varepsilon_y}}$ $U_y = Y'/\sqrt{\varepsilon_y}$ $$n = \frac{\lambda}{q\pi^2 r_x r_y} \int dU_x dU_y \, \delta \left[ U_x^2 + U_y^2 - \left( 1 - \frac{X^2}{\varepsilon_x} - \frac{Y^2}{\varepsilon_y} \right) \right]$$ **B6** #### Exploit the cylindrical symmetry $$\begin{split} U_\perp^2 &= U_x^2 + U_y^2 & dU_x dU_y = d\psi U_\perp dU_\perp = d\psi \frac{dU_\perp^2}{2} \\ n(x,y) &= \frac{\lambda}{q\pi^2 r_x r_y} \int_{-\pi}^{\pi} d\psi \ \int_0^\infty \frac{dU_\perp^2}{2} \ \delta \left[ U_\perp^2 - \left(1 - \frac{x^2}{r_x^2} - \frac{y^2}{r_y^2}\right) \right] \\ \text{giving} \end{split}$$ $$\begin{split} n(x,y) &= \frac{\lambda}{q\pi r_x r_y} \int_0^\infty \! dU_\perp^2 \; \delta \left[ U_\perp^2 - \left( 1 - \frac{x^2}{r_x^2} - \frac{y^2}{r_y^2} \right) \right] \\ &= \begin{cases} \frac{\lambda}{q\pi r_x r_y} = \hat{n}, & \text{if } x^2/r_x^2 + y^2/r_y^2 < 1 \\ 0, & \text{if } x^2/r_x^2 + y^2/r_y^2 > 1 \end{cases} \end{split}$$ Shows that the singular KV distribution yields the required uniform density elliptical projection required for self-consistency! Note: Line Charge: $$\lambda = \cos \alpha$$ SM Lund, USPAS, June 2011 Line Charge: $\lambda = \text{const}$ **B**7 Transverse Equilibrium Distributions #### // Aside An interesting footnote to this Appendix is that an infinity of canonical generating functions can be applied to transform the KV distribution in standard quadratic form $$f_{\perp} \sim \delta[X^2 + X'^2 + Y^2 + Y'^2 - \text{const}]$$ to other sets of variables. These distributions have underlying KV form. - Not logical to label transformed KV distributions as "new" but this has been done in the literature - Could generate an infinity of KV like equilibria in this manner - Identifying specific transforms with physical relevance can be useful even if the canonical structure of the distribution is still KV - Helps identify basic design criteria with envelope consistency equations etc. - Example of this is a self-consistent KV distribution formulated for quadrupole skew coupling // SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions **B8** ### S4: Continuous Focusing limit of the KV Equilibrium Distribution Continuous focusing, axisymmetric beam $$\kappa_x(s) = \kappa_y(s) = k_{\beta 0}^2 = \mathrm{const}$$ $\varepsilon_x = \varepsilon_y \equiv \varepsilon$ $r_x = r_y \equiv r_b$ Undepressed betatron wavenumber $$r_x'' + \kappa_x r_x - \frac{2Q}{r_x + r_y} - \frac{\varepsilon_x^2}{r_x^3} = 0$$ $$r_y'' + \kappa_y r_y - \frac{2Q}{r_x + r_y} - \frac{\varepsilon_y^2}{r_y^3} = 0$$ reduces to: $$r_b^{\prime\prime}+k_{eta0}^2r_b- rac{Q}{r_b}- rac{arepsilon^2}{r_b^3}=0$$ with matched ( $r'_h = 0$ ) solution $$r_b = \left(\frac{Q + \sqrt{4k_{\beta 0}^2 \varepsilon^2 + Q^2}}{2k_{\beta 0}^2}\right)^{1/2} = \text{const}$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 75 Similarly, the particle equations of motion within the beam are: $$x'' + \left\{ \kappa_x - \frac{2Q}{[r_x + r_y]r_x} \right\} x = 0$$ $y'' + \left\{ \kappa_y - \frac{2Q}{[r_x + r_y]r_y} \right\} y = 0$ reduce to $$\mathbf{x}_{\perp}^{\prime\prime} + k_{\beta}^2 \mathbf{x}_{\perp} = 0$$ $$\mathbf{x}_{\perp}^{"} + k_{\beta}^2 \mathbf{x}_{\perp} = 0$$ $k_{\beta} \equiv \sqrt{k_{\beta 0}^2 - \frac{Q}{r_b^2}} = \text{const}$ Depressed betatron wavenumber with solution $$\mathbf{x}_{\perp}(s) = \mathbf{x}_{\perp i} \cos[k_{eta}(s-s_i)] + rac{\mathbf{x}_{\perp i}'}{k_{eta}} \sin[k_{eta}(s-s_i)]$$ Space-charge tune depression (rate of phase advance same everywhere, $L_p$ arb.) $$\frac{k_{\beta}}{k_{\beta 0}} = \frac{\sigma}{\sigma_0} = \left(1 - \frac{Q}{k_{\beta 0}^2 r_b^2}\right)^{1/2} \quad \begin{array}{c} 0 \leq \frac{\sigma}{\sigma_0} \leq 1 \\ \varepsilon \to 0 & Q \to 0 \\ \text{envelope equation} \end{array}$$ envelope equation $$\Rightarrow r_b = \sqrt{Q}/k_{\beta 0}$$ Transverse Equilibrium Distributions 76 SM Lund, USPAS, June 2011 ### Continuous Focusing KV Equilibrium – Undepressed and depressed particle orbits in the x-plane $$k_{\beta} = \frac{\sigma}{\sigma_0} k_{\beta 0}$$ $\frac{\sigma}{\sigma_0} = 0.2$ $y = 0 = y'$ Much simpler in details than the periodic focusing case. but qualitatively similar in that space-charge "depresses" the rate of particle phase advance SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 77 ### Continuous Focusing KV Beam - Equilibrium Distribution Form Using $$\lambda = q\pi \hat{n}r_b^2$$ $\hat{n} = \text{const}$ density within the beam for the beam line charge and $$\delta(\text{const} \cdot x) = \frac{\delta(x)}{\text{const}}$$ the full elliptic beam KV distribution can be expressed as: • See next slide for steps involved in the form reduction $$egin{split} f_{\perp} &= rac{\lambda}{q\pi^2arepsilon_xarepsilon_y}\delta\left[\left( rac{x}{r_x} ight)^2 + \left( rac{r_xx' - r_x'x}{arepsilon_x} ight)^2 + \left( rac{y}{r_y} ight)^2 + \left( rac{r_yy' - r_y'y}{arepsilon_y} ight)^2 - 1 ight] \ &= rac{\hat{n}}{2\pi}\delta(H_{\perp} - H_{\perp b}) \end{split}$$ where $$\begin{split} H_{\perp} &= \frac{1}{2}\mathbf{x}_{\perp}^{\prime 2} + \frac{1}{2}k_{\beta 0}^{2}\mathbf{x}_{\perp}^{2} + \frac{q\phi}{m\gamma_{b}^{3}\beta_{b}^{2}c^{2}} \\ &= \frac{1}{2}\mathbf{x}_{\perp}^{\prime 2} + \frac{\varepsilon^{2}}{2r_{b}^{4}}\mathbf{x}_{\perp}^{2} & \text{-- Hamiltonian} \\ & \text{(on-axis } \phi = 0 \text{ ref taken)} \\ H_{\perp b} &\equiv \frac{\varepsilon^{2}}{2r_{b}^{2}} = \text{const} & \text{-- Hamiltonian at beam edge, } r = r_{b} \end{split}$$ $$H_{\perp b} \equiv \frac{\varepsilon^2}{2r_b^2} = \text{const}$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 78 /// Aside: Steps of derivation Using: $$\varepsilon_x = \varepsilon_y \equiv \varepsilon \\ r_x = r_y \equiv r_b = \text{const}$$ $$\lambda = q\pi \hat{n} r_b^2 = \text{const}$$ $$\begin{split} f_{\perp} &= \frac{\lambda}{q\pi^2 \varepsilon_x \varepsilon_y} \delta \left[ \left( \frac{x}{r_x} \right)^2 + \left( \frac{r_x x' - r_x' x}{\varepsilon_x} \right)^2 + \left( \frac{y}{r_y} \right)^2 + \left( \frac{r_y y' - r_y' y}{\varepsilon_y} \right)^2 - 1 \right] \\ &= \frac{\hat{n} r_b^2}{\pi \varepsilon^2} \delta \left( \frac{x^2}{r_x^2} + \frac{y^2}{r_x^2} + \frac{r_b^2 x'^2}{\varepsilon^2} + \frac{r_b^2 y'^2}{\varepsilon^2} - 1 \right) \end{split}$$ $$\delta(\text{const} \cdot x) = \frac{\delta(x)}{\text{const}}$$ $$f_{\perp} = \frac{\hat{n}}{2\pi} \delta \left( \frac{1}{2} \mathbf{x}_{\perp}^{\prime 2} + \frac{\varepsilon^2}{2r_b^4} \mathbf{x}_{\perp}^2 - \frac{\varepsilon^2}{2r_b^2} \right)$$ The solution for the potential for the uniform density beam *inside* the beam is: $$\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial\phi}{\partial r} = -\frac{\lambda}{\pi\epsilon_0 r_b^2} \longrightarrow \phi = -\frac{\lambda}{4\pi\epsilon_0 r_b^2}\mathbf{x}_{\perp}^2 + \text{const}$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 79 The Hamiltonian becomes: $$\begin{split} H_{\perp} &= \frac{1}{2} \mathbf{x}_{\perp}^{\prime 2} + \frac{1}{2} k_{\beta 0}^2 \mathbf{x}_{\perp}^2 + \frac{q \phi}{m \gamma_b^3 \beta_b^2 c^2} \\ &= \frac{1}{2} \mathbf{x}_{\perp}^{\prime 2} + \frac{1}{2} k_{\beta 0}^2 \mathbf{x}_{\perp}^2 - \frac{q \lambda}{4 \pi m \gamma_b^3 \beta_b^2 c^2 r_b^2} \mathbf{x}_{\perp}^2 + \text{const} \qquad Q \equiv \frac{q \lambda}{2 \pi \epsilon_0 m \gamma_b^3 \beta_b^2 c^2} \\ &= \frac{1}{2} \mathbf{x}_{\perp}^{\prime 2} + \frac{1}{2} k_{\beta 0}^2 \mathbf{x}_{\perp}^2 - \frac{Q}{2 r_b^2} \mathbf{x}_{\perp}^2 + \text{const} \qquad \qquad = \text{const} \end{split}$$ From the equilibrium envelope equation: $$k_{\beta 0}^2 = \frac{Q}{r_b^2} + \frac{\varepsilon^2}{r_b^4}$$ The Hamiltonian reduces to: $$H_{\perp} = \frac{1}{2} \mathbf{x}_{\perp}^{\prime 2} + \frac{\varepsilon^2}{2r_h^4} \mathbf{x}_{\perp}^2 + \text{const}$$ with edge value (turning point with zero angle): $$H_{\perp b} \equiv \frac{\varepsilon^2}{2r_i^2} + \text{const}$$ Giving (constants are same in Hamiltonian and edge value and subtract out): $$f_{\perp} = \frac{\hat{n}}{2\pi} \delta \left( \frac{1}{2} \mathbf{x}_{\perp}^{\prime 2} + \frac{\varepsilon^2}{2r_h^4} \mathbf{x}_{\perp}^2 - \frac{\varepsilon^2}{2r_h^2} \right) = \frac{\hat{n}}{2\pi} \delta \left( H_{\perp} - H_{\perp b} \right)$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions /// #### Equilibrium distribution $$f_{\perp}(H_{\perp}) = \frac{\hat{n}}{2\pi} \delta(H_{\perp} - H_{\perp b})$$ $$H_{\perp b} = \frac{\varepsilon^2}{2r_b^2} = \text{const}$$ $$\hat{n} = \text{const} \quad \text{because } r_b = \text{const}$$ $$H_{\perp b} = \frac{\varepsilon^2}{2r_b^2} = \text{const}$$ From the equilibrium $f_{\perp}(H_{\perp})$ can explicitly calculate (see homework problems) Density: $$n = \int d^2 x'_{\perp} f_{\perp} = \left\{ \begin{array}{ll} \hat{n}, & 0 \le r < r_b \\ 0, & r_b < r \end{array} \right.$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 81 #### Continuous Focusing KV Beam – Comments For continuous focusing, $H_{\perp}$ is a single particle constant of the motion (see problem sets), so it is not surprising that the KV equilibrium form reduces to a delta function form of $f_{\perp}(H_{\perp})$ ◆ Because of the delta-function distribution form, all particles in the continuous focusing KV beam have the same transverse energy with $H_{\perp} = H_{\perp b} = {\rm const}$ Several textbook treatments of the KV distribution derive continuous focusing versions and then just write down (if at all) the periodic focusing version based on Courant-Snyder invariants. This can create a false impression that the KV distribution is a Hamiltonian-type invariant in the general form. ◆ For non-continuous focusing channels there is no simple relation between Courant-Snyder type invariants and $H_{\perp}$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 82 ### S5: Stationary Equilibrium Distributions in Continuous Focusing Channels Take $$\kappa_x(s) = \kappa_y(s) = k_{\beta 0}^2 = \text{const}$$ - ◆ Real transport channels have s-varying focusing functions - For a rough correspondence to physical lattices take: $k_{\beta 0} = \sigma_0/L_p$ A class of equilibrium can be constructed for any non-negative choice of function: $$f_{\perp} = f_{\perp}(H_{\perp}) \ge 0$$ $H_{\perp} = \frac{1}{2}\mathbf{x}_{\perp}^{\prime 2} + \frac{1}{2}k_{\beta 0}^2\mathbf{x}_{\perp}^2 + \frac{q\phi}{m\gamma_b^3\beta_b^2c^2}$ φ must be calculated consistently from the (generally nonlinear) Poisson equation: $$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\phi = -\frac{q}{\epsilon_0} \int d^2x'_{\perp} \ f_{\perp}(H_{\perp})$$ - Solutions generated will be steady-state $(\partial/\partial s = 0)$ - When $f_{\perp} = f_{\perp}(H_{\perp})$ , the Poisson equation *only* has axisymmetric solutions with $\partial/\partial\theta = 0$ [see: Lund, PRSTAB **10**, 064203 (2007)] The Hamiltonian is only equivalent to the Courant-Snyder invariant in continuous focusing (see: Transverse Particle Dynamics). In periodic focusing channels $\kappa_x(s)$ and $\kappa_y(s)$ vary in s and the Hamiltonian is *not* a constant of the motion. Transverse Equilibrium Distributions 83 The axisymmetric Poisson equation simplifies to: $$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\phi}{\partial r}\right) = -\frac{qn}{\epsilon_0} = -\frac{q}{\epsilon_0}\int d^2x'_{\perp} \ f_{\perp}(H_{\perp})$$ For notational convenience, introduce an effective potential (add applied component and rescale) defined by: $$\psi(r) \equiv \frac{1}{2}k_{\beta 0}^{2}r^{2} + \frac{q\phi}{m\gamma_{b}^{3}\beta_{b}^{2}c^{2}} \qquad r = \sqrt{x^{2} + y^{2}}$$ then $$H_{\perp}= rac{1}{2}\mathbf{x}_{\perp}^{\prime2}+\psi$$ and system axisymmetry can be exploited to calculate the beam density: $$n(r) = \int\! d^2 x_\perp' \; f_\perp(H_\perp) \; = 2\pi \int_\psi^\infty \! dH_\perp \; f_\perp(H_\perp)$$ Proof: $$n(r) = \int d^2x'_{\perp} \ f_{\perp}(H_{\perp}) = \int_{-\pi}^{\pi} d\tilde{\theta}' \int_{0}^{\infty} d\tilde{r}' \ \tilde{r}' f_{\perp} \left(\frac{1}{2}\tilde{r}'^2 + \psi\right)$$ $$H_{\perp} = \frac{1}{2}\tilde{r}'^2 + \psi \qquad H_{\perp}|_{\tilde{r}'=0} = \psi \qquad = 2\pi \int_{0}^{\infty} d\tilde{r}' \ \tilde{r}' f_{\perp} \left(\frac{1}{2}\tilde{r}'^2 + \psi\right)$$ $$dH_{\perp} = \tilde{r}' d\tilde{r}' \qquad H_{\perp}|_{\tilde{r}'\to\infty} \to \infty \qquad = 2\pi \int_{\psi}^{\infty} dH_{\perp} \ f_{\perp}(H_{\perp})$$ SM Lund, USPAS, June 2011 The Poisson equation can then be expressed in terms of the effective potential as: $$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\psi}{\partial r}\right) = 2k_{\beta0}^2 - \frac{2\pi q^2}{m\epsilon_0\gamma_b^3\beta_b^2c^2}\int_{\psi(r)}^{\infty}dH_{\perp} f_{\perp}(H_{\perp})$$ To characterize a choice of equilibrium function $f_{\perp}(H_{\perp})$ , the (transformed) Poisson equation must be solved • Equation is, in general, highly nonlinear rendering the procedure difficult - Linear for 2 special cases: KV (covered) and Waterbag (section to follow) Some general features of equilibria can still be understood: - ◆ Apply rms equivalent beam picture and interpret in terms of moments - Calculate equilibria for a few types of very different functions to understand the likely range of characteristics SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 85 #### Moment properties of continuous focusing equilibrium distributions Equilibria with any valid equilibrium $f_{\perp}(H_{\perp})$ satisfy the rms equivalent envelope equation for a matched beam: $$k_{\beta 0}^2 r_b - \frac{Q}{r_b} - \frac{\varepsilon^2}{r_b^3} = 0$$ - ◆ Describes average radial force balance of particles - Uses the result (see J.J. Barnard, Intro. Lectures): $\langle x\partial\phi/\partial x\rangle_{\perp}=-\lambda/(8\pi\epsilon_0)$ where $$Q = \frac{q\lambda}{2\pi\epsilon_0 m\gamma_b^3 \beta_b^2 c^2} = \text{const} \qquad \lambda = q \int d^2 x_\perp \int d^2 x_\perp' f_\perp(H_\perp)$$ $$r_b^2 = 4\langle x^2 \rangle_\perp = 2\langle r^2 \rangle_\perp = \frac{\int_0^\infty dr \ r^3 \int_\psi^\infty dH_\perp \ f_\perp(H_\perp)}{\int_0^\infty dr \ r \int_\psi^\infty dH_\perp \ f_\perp(H_\perp)} = \text{const}$$ $$\varepsilon^2 = 2r_b^2 \langle \mathbf{x}_\perp'^2 \rangle_\perp = 2r_b^2 \frac{\int_0^\infty dr \ r \int_\psi^\infty dH_\perp \ (H_\perp - \psi) f_\perp(H_\perp)}{\int_0^\infty dr \ r \int_\psi^\infty dH_\perp \ f_\perp(H_\perp)} = \text{const}$$ $$\langle \cdots \rangle_\perp = \frac{\int d^2 x_\perp \int d^2 x_\perp' \ \int d^2 x_\perp' \ f_\perp(H_\perp)}{\int d^2 x_\perp \int d^2 x_\perp' \ f_\perp(H_\perp)}$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 86 Parameters used to define the equilibrium function $$f_{\perp}(H_{\perp})$$ should be cast in terms of (or ratios of) $$k_{\beta 0}, Q, \varepsilon, r_b$$ for use in accelerator applications. The rms equivalent beam equations can be used to carry out needed parameter eliminations. Such eliminations can be complicated due to the nonlinear structure of the equations. A local (generally r varying) kinetic temperature can also be calculated $$T_x = \langle x'^2 \rangle_{\mathbf{x}'_{\perp}}$$ $\langle \cdots \rangle_{\mathbf{x}'_{\perp}} \equiv \frac{\int d^2 x'_{\perp} \cdots f_{\perp}}{\int d^2 x'_{\perp} f_{\perp}}$ $$n(r)T_x(r) = \frac{1}{2} \int d^2x'_{\perp} \ \mathbf{x}'_{\perp}^2 f_{\perp}(H_{\perp}) \ = 2\pi \int_{\psi}^{\infty} dH_{\perp} \ (H_{\perp} - \psi) f_{\perp}(H_{\perp})$$ which is also related to the emittance. $$\langle x'^2 \rangle_{\perp} = \frac{\int d^2 x_{\perp} \ n T_x}{\int d^2 x_{\perp} n} \qquad \qquad \varepsilon^2 = 16 \langle x^2 \rangle_{\perp} \langle x'^2 \rangle_{\perp} = 4 r_b^2 \frac{\int d^2 x_{\perp} \ n T}{\int d^2 x_{\perp} \ n}$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 87 ### Choices of continuous focusing equilibrium distributions: Common choices for $f_{\perp}(H_{\perp})$ analyzed in the literature: 1) **KV** (already covered) $$f_{\perp} \propto \delta(H_{\perp} - H_{\perp b})$$ $H_{\perp b} = { m const}$ 2) Waterbag (to be covered) [see M. Reiser, Charged Particle Beams, (1994, 2008)] $$\frac{f_{\perp} \propto \Theta(H_{\perp b} - H_{\perp})}{\Theta(x) = \begin{cases} 0, & x < 0 \\ 1, & 0 < x \end{cases}}$$ 3) Thermal (to be covered) [see M. Reiser; Davidson, Noneutral Plasmas, 1990] $$f_{\perp} \propto \exp(-H_{\perp}/T)$$ $$T = const > 0$$ Infinity of choices can be made for an infinity of papers! • Fortunately, range of behavior can be understood with a few reasonable choices SM Lund, USPAS, June 2011 ### Preview of what we will find: When relative space-charge is strong, all smooth equilibrium distributions expected to look similar Constant charge and focusing: $Q = 10^{-4}$ $k_{30}^2 = \text{const}$ Vary relative space-charge strength: $\sigma/\sigma_0=0.1,~0.2,~\cdots,~0.9$ Waterbag Distribution Radius, $k_{\beta_0}r$ Edge shape varies with distribution choice, but cores similar when $\sigma/\sigma_0$ small SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 89 S6: Continuous Focusing: The Waterbag Equilibrium Distribution: [Reiser, Theory and Design of Charged Particle Beams, Wiley (1994, 2008); and Review: Lund, Kikuchi, and Davidson, PRSTAB 12, 114801 (2009), Appendix D] Waterbag distribution: $$f_{\perp}(H_{\perp}) = f_0 \Theta(H_b - H_{\perp}) \qquad f_0 = {\rm const}$$ $$\Theta(x) = \left\{ \begin{array}{ll} 1, & x > 0 \\ 0, & x < 0 \end{array} \right.$$ $$H_b = {\rm const} \quad {\rm Edge \ Hamiltonian}$$ The physical edge radius $r_e$ of the beam will be related to the edge Hamiltonian: $$H_{\perp}|_{r=r_e}=H_b$$ Note (generally): $r_e eq r_b \equiv 2\langle x^2 \rangle_{\perp}^{1/2}$ $r_e > r_b$ Using previous formulas the equilibrium density can then be calculated as: $$H_{\perp} = \frac{1}{2} \mathbf{x}_{\perp}^{\prime 2} + \psi \qquad \qquad \psi = \frac{1}{2} k_{\beta 0}^2 r^2 + \frac{q\phi}{m \gamma_b^3 \beta_b^2 c^2}$$ $$n(r) = \int \! d^2 x'_{\perp} \ f_{\perp} = 2\pi \int_{\psi}^{\infty} \! dH_{\perp} \ f_{\perp}(H_{\perp}) = 2\pi f_0 \left\{ \begin{array}{ll} H_b - \psi(r), & \psi < H_b \\ 0, & \psi > H_b \end{array} \right.$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 90 The transformed Poisson equation of the equilibrium $$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\psi}{\partial r}\right) = 2k_{\beta 0}^2 - \frac{2\pi q^2}{m\epsilon_0\gamma_b^3\beta_b^2c^2}\int_{\psi(r)}^{\infty}dH_{\perp} f_{\perp}(H_{\perp})$$ can be expressed within the beam $(r < r_e)$ as: $$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\psi}{\partial r}\right) - k_0^2\psi = 2k_{\beta 0}^2 - k_0^2H_b$$ $$k_0^2 \equiv \frac{2\pi q^2 f_0}{\epsilon_0 m \gamma_b^3 \beta_b^2 c^2} = \text{const}$$ This is a modified Bessel function equation and the solution within the beam regular at the origin r = 0 and satisfying $\psi(r = r_e) = H_h$ is given by $$\psi(r) = H_b - 2\frac{k_{\beta 0}^2}{k_0^2} \left[ 1 - \frac{I_0(k_0 r)}{I_0(k_0 r_e)} \right]$$ where $I_{\ell}(x)$ is a modified Bessel function of order $\ell$ The density is then expressible within the beam $(r < r_e)$ as: $$n(r) = 4\pi f_0 \frac{k_{\beta 0}^2}{k_0^2} \left[ 1 - \frac{I_0(k_0 r)}{I_0(k_0 r_e)} \right]$$ $$= \frac{2\epsilon_0 m \gamma_b^3 \beta_b^2 c^2 k_{\beta 0}^2}{q^2} \left[ 1 - \frac{I_0(k_0 r)}{I_0(k_0 r_e)} \right]$$ Similarly, the local beam temperature within the beam can be calculated as: $$T_x(r) = \langle x'^2 \rangle_{\mathbf{x}'_{\perp}} = \frac{k_{\beta 0}^2}{k_0^2} \left[ 1 - \frac{I_0(k_0 r)}{I_0(k_0 r_e)} \right]$$ $$\propto n(r)$$ The proportionality between the temperature $T_x(r)$ and the density n(r) is a consequence of the waterbag equilibrium distribution choice and is not a general feature of continuous focusing. The waterbag distribution expression can now be expressed as: $$f_{\perp}(\mathbf{x}_{\perp}, \mathbf{x}'_{\perp}) = f_0 \Theta \left( 2 \frac{k_{\beta 0}^2}{k_0^2} \left[ 1 - \frac{I_0(k_0 r)}{I_0(k_0 r_e)} \right] - \frac{1}{2} \mathbf{x}'_{\perp}^2 \right)$$ - The edge Hamiltonian value $H_b$ has been eliminated - ◆ Parameters are: .... distribution normalization .... scaled edge radius .... scaled focusing strength Parameters preferred for accelerator applications: $$k_{\beta 0}, \quad Q, \quad \varepsilon_x = \varepsilon_y = \varepsilon_b$$ Needed constraints to eliminate parameters in terms of our preferred set will now be derived. SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 93 The perveance is then calculated as: $$Q \equiv \frac{q\lambda}{2\pi\epsilon_0 m \gamma_b^3 \beta_b^2 c^2} = (k_{\beta 0} r_e)^2 \frac{I_2(k_0 r_e)}{I_0(k_0 r_e)}$$ The edge and perveance equations can then be combined to obtain a parameter constriant relating $k_0 r_e$ to desired system parameters: $$\frac{k_{\beta 0}^2 r_b^2}{Q} = \frac{I_0^2(k_0 r_e)}{I_2^2(k_0 r_e)} - \frac{4}{(k_0 r_e)^2} \left[ 2 \frac{I_0(k_0 r_e)}{I_2(k_0 r_e)} + (k_0 r_e) \frac{I_0(k_0 r_e)I_3(k_0 r_e)}{I_2^2(k_0 r_e)} \right]$$ Here, any of the 3 system parameters on the LHS may be eliminated using the matched beam envelope equation to effect alternative parameterizations: $$k_{\beta 0}^2 r_b - \frac{Q}{r_b} - \frac{\varepsilon_b^2}{r_b^3} = 0$$ eliminate any of: $k_{\beta 0}^2$ , $r_b$ , $Q$ The rms equivalent beam concept can also be applied to show that: $$\frac{k_{\beta 0}^2 r_b^2}{Q} = \frac{1}{1 - (\sigma/\sigma_0)^2}$$ rms equivalent KV measure of $\sigma/\sigma_0$ ◆ Space-charge really nonlinear and the Waterbag equilibrium has a spectrum of $\sigma$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 95 #### Parameters constraints for the waterbag equilibrium beam First calculate the beam line-charge: $$\lambda = 2\pi q \int_0^{r_e} dr \ rn(r) = 4\pi^2 q f_0 \frac{k_{\beta 0}^2}{k_0^2} r_e^2 \left[ 1 - \frac{2}{k_0 r_e} \frac{I_1(k_0 r_e)}{I_0(k_0 r_e)} \right]$$ $$\lambda = 2\pi q \int_0^{r_e} dr \ rn(r) = 4\pi^2 q f_0 \frac{k_{\beta 0}^2}{k_0^2} r_e^2 \frac{I_2(k_0 r_e)}{I_0(k_0 r_e)}$$ here we have employed the modified Bessel function identities ( $\rho$ integer): $$\frac{d}{dx}[x^{\ell}I_{\ell}(x)] = x^{\ell}I_{\ell-1}(x),$$ $$-\frac{2\ell}{x}I_{\ell}(x) = I_{\ell+1}(x) - I_{\ell-1}(x),$$ Similarly, the beam rms edge radius can be explicitly calculated as: $$r_b^2 = 2\langle r^2 \rangle_{\perp} = 2 \frac{\int_0^{r_e} dr \ r^3 n(r)}{\int_0^{r_e} dr \ r n(r)}$$ $$\left(\frac{r_b}{r_e}\right)^2 = \frac{I_0(k_0 r_e)}{I_2(k_0 r_e)} - \frac{4}{(k_0 r_e)^2} \left[2 + (k_0 r_e) \frac{I_3(k_0 r_e)}{I_2(k_0 r_e)}\right]$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 94 The constraint is plotted over the full range of effective space-charge strength: $$\frac{1}{1-(\sigma/\sigma_0)^2} = \frac{I_0^2(k_0r_e)}{I_2^2(k_0r_e)} - \frac{4}{(k_0r_e)^2} \left[ 2\frac{I_0(k_0r_e)}{I_2(k_0r_e)} + (k_0r_e)\frac{I_0(k_0r_e)I_3(k_0r_e)}{I_2^2(k_0r_e)} \right]$$ • Equilibrium parameter $k_0 r_e$ uniquely fixes effective space-charge strength SM Lund, USPAS, June 2011 #### ///Aside: Parameter choices and limits of the constraint equation Some prefer to use an alternative space-charge strength measure to $\sigma/\sigma_0$ and use a so-called self-field parameter defined in terms of the on-axis plasma frequency of the distribution: #### Self-field parameter: $$s_b \equiv rac{\hat{\omega}_p^2}{2\gamma_b^3 \beta_b^2 c^2 k_{\beta 0}^2}$$ $\hat{\omega}_p^2 \equiv rac{q^2 \hat{n}}{m \epsilon_0}$ $\hat{n} = n(r=0)$ = on-axis plasma density For a KV equilibrium, $s_b$ and $\sigma/\sigma_0$ are simply related: $$s_b = 1 - \left(\frac{\sigma}{\sigma_0}\right)^2$$ For a waterbag equilibrium, $s_b$ and $k_0 r_e$ (from which $\sigma/\sigma_0$ can be calculated) are related by: $$s_b = 1 - \frac{1}{I_0(k_0 r_e)}$$ Generally, for smooth (non-KV) equilibria, $s_b$ turns out to be a logarithmically insensitive parameter for strong space-charge strength (see tables in S6 and S7) /// SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 97 Density Profile ### Use parameter constraints to plot properties of waterbag equilibrium 1) Density and temperature profile at fixed line charge and focusing strength - Parabolic density for weak space-charge and flat in the core out to a sharp edge for strong space charge - For the waterbag equilibrium, temperature T(r) is proportional to density n(r)so the same curves apply for T(r) SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 98 2) Phase-space boundary of distribution at fixed line charge and focusing strength $k_{\beta 0}^2 = \text{const}$ 0.8 0.005 0.01 0.015 0.02 Radius, $k_{\beta 0}r$ Edge of distribution in phase-space SM Lund, USPAS, June 2011 Angle, 0.015 0.010 0.005 0.000 Transverse Equilibrium Distributions 99 0.025 0.03 SM Lund, USPAS, June 2011 | | | | | | Q | $= 10^{-4}$ | |-------------------|--------|---------------------------------|-----------|-------------------|---------------------------|-----------------------------------------| | $\sigma/\sigma_0$ | $s_b$ | $\frac{k_{\beta 0}^2 r_b^2}{Q}$ | $k_0 r_e$ | $\frac{r_e}{r_b}$ | $\frac{k_0}{k_{\beta 0}}$ | $10^3 \times k_{\beta 0} \varepsilon_b$ | | 0.9 | 0.2502 | 5.263 | 1.112 | 1.217 | 39.81 | 0.4737 | | 0.8 | 0.4666 | 2.778 | 1.709 | 1.208 | 84.87 | 0.2222 | | 0.7 | 0.6477 | 1.961 | 2.304 | 1.197 | 137.5 | 0.1373 | | 0.6 | 0.7916 | 1.563 | 2.979 | 1.183 | 201.5 | 0.09375 | | 0.5 | 0.8968 | 1.333 | 3.821 | 1.166 | 283.8 | 0.06667 | | 0.4 | 0.9626 | 1.190 | 4.978 | 1.144 | 398.7 | 0.04762 | | 0.3 | 0.9928 | 1.099 | 6.789 | 1.118 | 579.3 | 0.03297 | | 0.2 | 0.9997 | 1.042 | 10.25 | 1.085 | 925.6 | 0.02083 | | 0.1 | 1.0000 | 1.010 | 20.38 | 1.046 | 1938. | 0.01010 | | | | | | | | | #### S7: Continuous Focusing: The Thermal Equilibrium Distribution: [Davidson, Physics of Nonneutral Plasma, Addison Wesley (1990), Reiser, Theory and Design of Charged Particle Beams, Wiley (1994, 2008), Review: Lund, Kikuchi, and Davidson, PRSTAB 12, 114801 (2009), Appendix F] In an infinitely long continuous focusing channel, collisions will eventually relax the beam to thermal equilibrium. The Fokker-Planck equation predicts that the unique Maxwell-Boltzmann distribution describing this limit is: $$\lim_{s \to \infty} f_{\perp} \propto \exp\left(-\frac{H_{\text{rest}}}{T}\right)$$ $H_{ m rest} = { m single} \ { m particle} \ { m Hamiltonian} \ { m of} \ { m beam} \ { m in} \ { m rest} \ { m frame} \ ({ m energy units})$ T = const Thermodynamic temperature (energy units) Beam propagation time in transport channel is generally short relative to collision time, inhibiting full relaxation - ◆ Collective effects may enhance relaxation rate - Wave spectrums likely large for real beams and enhanced by transient and nonequilibrium effects - Random errors acting on system may enhance and lock-in phase mixing SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 101 #### Continuous focusing thermal equilibrium distribution Analysis of the rest frame transformation shows that the 2D Maxwell-Boltzmann distribution (careful on frame for temperature definition!) is: $$f_{\perp}(H_{\perp}) = \frac{m\gamma_b \beta_b^2 c^2 \hat{n}}{2\pi T} \exp\left(-\frac{m\gamma_b \beta_b^2 c^2 H_{\perp}}{T}\right)$$ $$H_{\perp} = \frac{1}{2}\mathbf{x}_{\perp}'^2 + \frac{1}{2}k_{\beta 0}^2\mathbf{x}_{\perp}^2 + \frac{q\phi}{m\gamma_b^3\beta_b^2c^2} \qquad \qquad T = \text{const} \qquad \text{Temperature (energy units, lab frame)} \\ = \frac{1}{2}\mathbf{x}_{\perp}'^2 + \psi \qquad \qquad \qquad \phi(r=0) = \hat{n} = \text{const} \qquad \text{on-axis density} \\ \phi(r=0) = 0 \qquad \text{(reference choice)}$$ The density can then be conveniently calculated in terms of a scaled stream function: $$n(r) = \int d^2x'_{\perp} f_{\perp} = \hat{n}e^{-\tilde{\psi}}$$ $ilde{\psi}(r) \equiv rac{m\gamma_b\beta_b^2c^2\psi}{T} = rac{1}{T}\left( rac{m\gamma_b\beta_b^2c^2k_{eta0}^2}{2}r^2 + rac{q\phi}{\gamma_b^2} ight)$ and the x- and y-temperatures are equal and spatially uniform with: $$T_x = \gamma_b m \beta_b^2 c^2 \frac{\int d^2 x'_{\perp} \ x'^2 \ f_{\perp}}{\int d^2 x'_{\perp} \ f_{\perp}} = T = \text{const}$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 102 ### Scaled Poisson equation for continuous focusing thermal equilibrium To describe the thermal equilibrium density profile, the Poisson equation must be solved. In terms of the scaled effective potential, the Poisson equation is: $$\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial\tilde{\psi}}{\partial\rho}\right)=1+\Delta-e^{-\tilde{\psi}}$$ $$\tilde{\psi}(\rho=0)=0 \qquad \frac{\partial\tilde{\psi}}{\partial\rho}(\rho=0)=0$$ Here, $$\lambda_D=\left(\frac{\epsilon_0T}{q^2\hat{n}}\right)^{1/2} \begin{array}{c} \text{Debye length formed} \\ \text{from the peak, on-axis} \\ \text{beam density} \end{array} \qquad \rho=\frac{r}{\gamma_b\lambda_D} \qquad \text{Scaled radial coordinate} \\ \text{in rel. Debye lengths} \end{array}$$ $$\lambda_D = \left( rac{\epsilon_0 T}{q^2 \hat{n}} ight)^{1/2}$$ Debye length formed from the peak, on-axi beam density $$\hat{\omega}_p \equiv \left(\frac{q^2 \hat{n}}{\epsilon_0 m}\right)^{1/2} \quad \text{Plasma frequency formed from on-axis beam density} \qquad \longrightarrow \qquad \lambda_D = \left(\frac{T}{\hat{\omega}_p^2 m}\right)^{1/2}$$ $$\Delta = \frac{2\gamma_b^3\beta_b^2c^2k_{\beta0}^2}{\hat{\omega}_p^2} - 1 \qquad \begin{array}{l} \text{Dimensionless parameter relating} \\ \text{the ratio of applied to space-charge} \\ \text{defocusing forces} \end{array}$$ - ◆ Equation is highly nonlinear, but can be solved (approximately) analytically - Scaled solutions depend only on the single dimensionless parameter $\Delta$ ### Numerical solution of scaled thermal equilibrium Poisson equation in terms of a normalized density - Equation is highly nonlinear and must, in general, be solved numerically - Dependance on $\Delta$ is very sensitive - For small $\Delta$ , the beam is nearly uniform in the core - Edge fall-off is always in a few Debye lengths when $\Delta$ is small - Edge becomes very sharp at fixed beam line-charge /// Aside: Approximate Analytical Solution for the Thermal Equilibrium Density/Potential Using the scaled density $$N \equiv \frac{n}{\hat{n}} = e^{-\tilde{\psi}}$$ the equilibrium Poisson equation can be equivalently expressed as: $$\begin{split} \frac{\partial^2 N}{\partial \rho^2} - \frac{1}{N} \left( \frac{\partial N}{\partial \rho} \right)^2 + \frac{1}{\rho} \frac{\partial N}{\partial \rho} &= N^2 - (1 + \Delta) N \\ N(\rho = 0) &= 1 \\ \frac{\partial N}{\partial \rho} \bigg|_{\rho = 0} &= 0 \end{split}$$ This equation has been analyzed to construct limiting form analytical solutions for both large and small $\Delta$ [see: Startsev and Lund, PoP 15, 043101 (2008)] - ◆ Large $\triangle$ solution => warm beam => Gaussian-like radial profile - ◆ Small ∧ solution => cold beam => Flat core, bell shaped profile - Highly nonlinear structure, but approx solution has very high accuracy out to where the density becomes exponentially small! SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 105 #### Large $\Delta$ solution: $$N \simeq \exp\left[-\frac{1+\Delta}{4}\rho^2\right]$$ • Accurate for $\Delta \gtrsim 0.1$ [For full error spec. see: PoP **15**, 043101 (2008)] #### Small $\Delta$ solution: $$N \simeq \frac{\left(1+\frac{1}{2}\Delta+\frac{1}{24}\Delta^2\right)^2}{\left\{1+\frac{1}{2}\Delta I_0(\rho)+\frac{1}{24}[\Delta I_0(\rho)]^2\right\}^2} \qquad \begin{array}{c} I_0(x) = 0^{\text{th}} \text{ order Modified} \\ \text{Bessel Function} \\ \text{of } 1^{\text{st}} \text{ kind} \end{array}$$ • Highly accurate for $\Delta \le 0.1$ [For full error spec. see: PoP 15, 043101 (2008)] Special numerical methods have also been developed to calculate N or $\psi = -\ln N$ to arbitrary accuracy for any value of $\Delta$ , however small [see: Lund, Kikuchi, and Davidson, PRSTAB, to be published, (2008) Appendices F, G] - Extreme flatness of solution for small $\Delta \le 10^{-8}$ creates numerical precision problems that require special numerical methods to address - Method was used to verify accuracy of small $\Delta$ solution above /// SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 106 ### Parameters constraints for the thermal equilibrium beam Parameters employed in $f_{\perp}(H_{\perp})$ to specify the equilibrium are (+ kinematic factors): $\hat{n}, T, \Delta$ Parameters preferred for accelerator applications: $$k_{\beta 0}, \quad Q, \quad \varepsilon_x = \varepsilon_y = \varepsilon_b$$ Needed constraints can be calculated directly from the equilibrium: $$Q = \left(\frac{T}{\gamma_b m \beta_b^2 c^2}\right) \int_0^\infty d\rho \rho \ e^{-\tilde{\psi}}$$ $$k_{\beta 0}^2 \varepsilon_b = 4 \left(\frac{T}{\gamma_b m \beta_b^2 c^2}\right) \left[4 \left(\frac{T}{\gamma_b m \beta_b^2 c^2}\right) + Q\right]$$ $$k_{\beta 0}^2 = \left(\frac{T}{\gamma_b m \beta_b^2 c^2}\right) \frac{1 + \Delta}{2(\gamma_b \lambda_D)^2}$$ Also useful, $$\begin{split} \varepsilon_b^2 &= 16 \frac{T}{\gamma_b m \beta_b^2 c^2} \langle x^2 \rangle_\perp^2 = 4 \left( \frac{T}{\gamma_b m \beta_b^2 c^2} \right) r_b^2 \\ r_b^2 &= 4 \langle x^2 \rangle_\perp = \frac{1}{k_{\beta 0}^2} \left[ 4 \left( \frac{T}{\gamma_b m \beta_b^2 c^2} \right) + Q \right] \end{split}$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 107 Integral function of $\Delta$ only Example of derivation steps applied to derive previous constraint equations: $\lambda = \frac{\gamma_b^2 T}{2a} \int_0^\infty d\rho \ \rho e^{-\tilde{\psi}}$ Line charge: $r_b^2 = 4\langle x^2 \rangle_{\perp} = 2\gamma_b^2 \lambda_D^2 \frac{\int_0^{\infty} d\rho \; \rho^3 e^{-\tilde{\psi}}}{\int_0^{\infty} d\rho \; \rho e^{-\tilde{\psi}}}$ rms edge emittance: $$\varepsilon_b^2 = \varepsilon_x^3 = 16[\langle x^2 \rangle_\perp \langle x'^2 \rangle_\perp - \langle x' \rangle_\perp^2]$$ $$= 16 \frac{T}{\gamma_b m \beta_c^2 c^2} \langle x^2 \rangle_\perp = 4 \left( \frac{T}{\gamma_b m \beta_c^2 c^2} \right) r_b^2$$ Matched envelope equation: $$y_{b}^{\prime\prime} + k_{\beta 0}^{2} r_{b} - \frac{Q}{r_{b}} - \frac{\varepsilon_{b}^{2}}{r_{b}^{3}} = 0$$ SM Lund, USPAS, June 2011 These constraints must, in general, be solved numerically Useful to probe system sensitivities in relevant parameters #### Examples: 1) rms equivalent beam tune depression as a function of $\Delta$ $$\frac{\sigma}{\sigma_0} = \sqrt{1 - \frac{Q}{k_{\beta_0}^2 r_b^2}} = \begin{cases} 1 - \frac{|\int_0^\infty d\rho \, \rho e^{-s} d\rho}{(1 + \Delta) \int_0^\infty d\rho} \\ 1 - \frac{1}{(1 \frac$$ rms equivalent KV measure of $\sigma/\sigma_0$ • Space-charge really nonlinear and the Thermal equilibrium has a spectrum of σ R.H.S function of $\Delta$ only \* Small rms equivalent tune depression corresponds to <code>extremely</code> small values of $\Delta$ - Special numerical methods generally must be employed to calculate equilibrium SM Lund, USPAS, June 2011 SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 109 Transverse Equilibrium Distributions 111 2) Density profile at fixed line charge and focusing strength - Density profile changes with scaled T - Low values yields a flat-top $\Rightarrow \sigma/\sigma_0 \rightarrow 0$ - High values yield a Gaussian like profile => $\,\sigma/\sigma_0 \, ightarrow \, 1\,$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 110 3) Distribution contours at fixed line charge and focusing strength $Q=10^{-4}$ $k_{\beta 0}^2 = \text{const}$ $f_{\perp}(H_{\perp})/f_{\perp}(0)$ Contours, $\sigma/\sigma_0 = 0.5$ 0.006 0.005 Angle, $|\vec{x}'_{\perp}|$ 0.004 0.6 0.003 0.4 0.002 0.2 0.001 0.0 0.000 0.005 0.01 0.015 0.02 0.025 0.03 0.6 0.8 Radius, $k_{\beta 0}r$ $\times 10^{-2}$ Radius, $k_{\beta 0}r$ Radial scales $f_{\perp}(H_{\perp})/f_{\perp}(0)$ Contours, $\sigma/\sigma_0 = 0.1$ $f_{\perp}(H_{\perp})/f_{\perp}(0)$ Contours, $\sigma/\sigma_0 = 0.9$ change 0.0012 0.025 d) 0.0010 0.020 0.0008 0.015 0.0006 0.010 0.0004 0.005 0.0002 0.005 0.015 0.02 0.025 0.03 0.01 0.4 0.6 0.8 $\times 10^{-2}$ Radius, $k_{\beta 0}r$ ◆ Particles will move approximately force-free till approaching the edge where it is rapidly bent back (see Debye screening analysis this lecture) Scaled parameters for examples 2) and 3) | | | | | $Q = 10^{-4}$ | | |-------------------|-------------------------|--------|-----------------------------------------------------|-----------------------------------|-----------------------------------------| | $\sigma/\sigma_0$ | $\Delta$ | $s_b$ | $k_{eta 0} \gamma_b \lambda_{\scriptscriptstyle D}$ | $\frac{T}{m\gamma_b\beta_b^2c^2}$ | $10^3 \times k_{\beta 0} \varepsilon_b$ | | 0.9 | 1.851 | 0.3508 | 12.33 | $1.065{\times}10^{-4}$ | 0.4737 | | 0.8 | $6.382 \times 10^{-1}$ | 0.6104 | 6.034 | $4.444{\times}10^{-5}$ | 0.2222 | | 0.7 | $2.649 \times 10^{-1}$ | 0.7906 | 3.898 | $2.402{\times}10^{-5}$ | 0.1373 | | 0.6 | $1.059 \times 10^{-1}$ | 0.9043 | 2.788 | $1.406{\times}10^{-5}$ | 0.09375 | | 0.5 | $3.501 \times 10^{-2}$ | 0.9662 | 2.077 | $8.333 \times 10^{-6}$ | 0.06667 | | 0.4 | $7.684 \times 10^{-3}$ | 0.9924 | 1.549 | $4.762{\times}10^{-6}$ | 0.04762 | | 0.3 | $6.950 \times 10^{-4}$ | 0.9993 | 1.112 | $2.473{\times}10^{-6}$ | 0.03297 | | 0.2 | $6.389 \times 10^{-6}$ | 1.0000 | 0.7217 | $1.042 \times 10^{-6}$ | 0.02083 | | 0.1 | $4.975 \times 10^{-12}$ | 1.0000 | 0.3553 | $2.525 \times 10^{-7}$ | 0.01010 | SM Lund, USPAS, June 2011 #### Comments on continuous focusing thermal equilibria From these results it is not surprising that the KV envelope model works well for real beams with strong space-charge (i.e, rms equivalent $\sigma/\sigma_0$ small) since the edges of a smooth thermal [and other smooth $f_{\perp}(H_{\perp})$ ] distribution become sharp ◆ Thermal equilibrium likely overestimates the edge with since T = const, whereas a real distribution likely becomes colder near the edge However, the beam edge contains strong nonlinear terms that will cause deviations from the KV model - Nonlinear terms can radically change the stability properties (stabilize fictitious higher order KV modes) - ◆ Smooth distributions for strong space-charge contain a broad spectrum of particle oscillation frequencies that are amplitude dependent which is stabilizing - Landau damping - Phase mixing - Less of distribution resonant with perturbations Simplified 1D (sheet beam) model developed to more simply calculate the frequency distribution in a thermal equilibrium beam to more simply illustrate the influence of space-charge in 1D In 2D thermal equilibrium beam, frequency distribution is 2D. Orbits are closed Lund, Friedman, and Bazouin, PRSTAB 14, 054201 (2011) Frequency distribution in a thermal equilibrium beam in r and theta but not in x and y: ◆ Radial bounce frequency Azimuthal frequency • Model shown to produce equilibria with same essential structure as higher dimensional (2D, 3D) models when appropriate "equivalent" parameters used SM Lund, USPAS, June 2011 SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 113 Transverse Equilibrium Distributions 115 SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 114 Result for space-charge canceling out ~ 1/2 applied focus strength Mean: $$\mu_F \equiv k_\beta/k_{\beta 0}$$ RMS: $$\sigma_F \equiv \sqrt{(k_\beta - \overline{k_\beta})^2}/k_{\beta 0} = \sqrt{\overline{k_\beta^2} - \overline{k_\beta}^2}/k_{\beta 0}$$ Width: $$F_w \equiv 2\sqrt{3}\sigma_k$$ Relative Width: $$F_w/\mu_F \qquad \overline{\cdots} = \int_0^1 d(k_\beta/k_{\beta 0}) \cdots F$$ Superimposed results for values of $\sigma/\sigma_0$ show how the normalized distribution of oscillator frequencies F in the thermal equilibrium - ◆ Distribution becomes very broad as space-charge intensity becomes stronger! - KV model (single frequency) very poor - Sharp for weak space-charge - KV model approximately right (single frequency shifted from applied focus) SM Lund, USPAS, June 2011 #### Frequency distribution, statistical measures: | | | Statistical Measures | | | | |-------------------|------------------------|------------------------------------------|------------------------------------------------------------------|------------------------------------------------|----------------------------------| | | | Mean: | RMS: $\sigma_F =$ | Width: | Relative Width: | | $\sigma/\sigma_0$ | $\Delta$ | $\mu_F = \overline{k_\beta}/k_{\beta 0}$ | $\sqrt{\overline{k_{eta}^2} - \overline{k_{eta}}^2} / k_{eta 0}$ | $F_w = 2\sqrt{3}\sigma_{\scriptscriptstyle F}$ | $F_w/\mu_{\scriptscriptstyle F}$ | | 0.9 | 2.879 | 0.886 | 0.0176 | 0.0610 | 0.0689 | | 0.8 | 1.093 | 0.774 | 0.0354 | 0.123 | 0.159 | | 0.7 | 0.5181 | 0.663 | 0.0531 | 0.184 | 0.277 | | 0.6 | 0.2500 | 0.557 | 0.0696 | 0.241 | 0.433 | | 0.5 | 0.1097 | 0.456 | 0.0833 | 0.289 | 0.634 | | 0.4 | $3.780 \times 10^{-2}$ | 0.361 | 0.0915 | 0.317 | 0.878 | | 0.3 | $7.562 \times 10^{-3}$ | 0.274 | 0.0898 | 0.311 | 1.14 | | 0.2 | $3.649 \times 10^{-4}$ | 0.190 | 0.0750 | 0.260 | 1.37 | | 0.1 | $5.522\times10^{-8}$ | 0.102 | 0.0465 | 0.161 | 1.58 | SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 117 Transverse Equilibrium Distributions #### Frequency distribution, extreme value measures: | | | | Extreme Measures | | | |-------------------|------------------------|------|------------------------|---------|---------------------| | | | At | Max[F] | At Left | F Cutoff | | $\sigma/\sigma_0$ | $\Delta$ | F | $k_{\beta}/k_{\beta0}$ | F | $k_{eta}/k_{eta 0}$ | | 0.9 | 2.879 | 27.3 | 0.862 | 27.3 | 0.862 | | 0.8 | 1.093 | 12.1 | 0.723 | 12.1 | 0.723 | | 0.7 | 0.5181 | 7.13 | 0.598 | 7.09 | 0.584 | | 0.6 | 0.2500 | 5.03 | 0.515 | 4.47 | 0.447 | | 0.5 | 0.1097 | 4.12 | 0.434 | 2.79 | 0.314 | | 0.4 | $3.780 \times 10^{-2}$ | 3.83 | 0.352 | 1.58 | 0.191 | | 0.3 | $7.562 \times 10^{-3}$ | 4.03 | 0.270 | 0.698 | 0.0866 | | 0.2 | $3.649 \times 10^{-4}$ | 4.94 | 0.177 | 0.153 | 0.0191 | | 0.1 | $5.522 \times 10^{-8}$ | 8.18 | 0.0912 | 0.00191 | 0.000235 | SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 118 #### S8: Continuous Focusing: Debye Screening in a Thermal Equilibrium Beam [Davidson, *Physics of Nonneutral Plasmas*, Addison Wesley (1990)] We will show that space-charge and the applied focusing forces of the lattice conspire together to Debye screen interactions in the core of a beam with high space-charge intensity - Will systematically derive the Debye length employed by J.J. Barnard in the Introductory Lectures - ◆ The applied focusing forces are analogous to a stationary neutralizing species in a plasma #### // Review: Free-space field of a "bare" test line-charge $\lambda_t$ at the origin r=0 $$\rho(r) = \lambda_t \frac{\delta(r)}{2\pi r} \qquad \qquad \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial \phi}{\partial r} \right) = -\frac{\lambda_t}{2\pi \epsilon_0} \frac{\delta(r)}{r}$$ solution (use Gauss' theorem) shows long-range interaction $$\phi = - rac{\lambda_t}{2\pi\epsilon_0} \ln(r) + ext{const}$$ $E_r = - rac{\partial \phi}{\partial r} = rac{\lambda_t}{2\pi\epsilon_0 r}$ Place a *small* test line charge at r = 0 in a thermal equilibrium beam: $$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\phi}{\partial r}\right) = -\frac{q}{\epsilon_0}\int\! d^2x_\perp'\; f_\perp(H_\perp)\; -\; \frac{\lambda_t}{2\pi\epsilon_0}\frac{\delta(r)}{r}$$ Thermal Equilibrium Test Line-Charge Set: $\phi_0$ = Thermal Equilibrium potential with no test line-charge $\phi = \phi_0 + \delta \phi$ $\delta \phi =$ Perturbed potential from test line-charge Assume thermal equilibrium adapts adiabatically to the test line-charge: $$n(r) = \int d^2 x'_{\perp} f_{\perp}(H_{\perp}) = \hat{n}e^{-\tilde{\psi}} \simeq \hat{n}e^{-\tilde{\psi}_0(r)}e^{-q\delta\phi/(\gamma_b^2 T)}$$ $$\simeq \hat{n}e^{-\tilde{\psi}_0(r)}\left(1 - \frac{q\delta\phi}{\gamma_c^2 T}\right)$$ $$\left|\frac{q\delta\phi}{\gamma_b^2 T}\right| \ll 1$$ Yields: $$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\delta\phi}{\partial r}\right) = -\frac{q^2}{\epsilon_0\gamma_b^2T}\hat{n}e^{-\tilde{\psi}_0(r)}\delta\phi \ - \ \frac{\lambda_t}{2\pi\epsilon_0}\frac{\delta(r)}{r}$$ Assume a relatively cold beam so the density is flat near the test line-charge: $$\hat{n}e^{-\tilde{\psi}_0(r)} \simeq \hat{n}$$ SM Lund, USPAS, June 2011 This gives: $$\begin{split} \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\delta\phi}{\partial r}\right) - \frac{\delta\phi}{\gamma_b^2\lambda_D^2} &= -\frac{\lambda_t}{2\pi\epsilon_0}\frac{\delta(r)}{r}\\ \lambda_D &= \left(\frac{\epsilon_0 T}{q^2\hat{n}}\right)^{1/2} = & \text{Debye radius formed from peak,}\\ &\text{on-axis beam density} \end{split}$$ Derive a general solution by connecting solution very near the test charge with the general solution for r nonzero: Near solution: $(r \rightarrow 0)$ $$\frac{\delta\phi}{\gamma_b^2\lambda_D^2} \quad \text{ Negligible $---$} \quad \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\delta\phi}{\partial r}\right) = -\frac{\lambda_t}{2\pi\epsilon_0}\frac{\delta(r)}{r}$$ The free-space solution can be immediately applied: $$\delta\phi \simeq -\frac{\lambda_t}{2\pi\epsilon_0}\ln(r) + \text{const}$$ $$r \to 0$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 121 Transverse Equilibrium Distributions 123 General Exterior Solution: $(r \neq 0)$ The delta-function term vanishes giving: $$rac{1}{ ho} rac{\partial}{\partial ho}\left( ho rac{\partial\delta\phi}{\partial ho} ight)-\delta\phi=0 \hspace{1.5cm} ho\equiv rac{r}{\gamma_b\lambda_D}$$ This is a modified Bessel equation of order 0 with general solution: $$\delta\phi=C_1I_0(\rho)+C_2K_0(\rho) \qquad \begin{matrix} I_0(x)=\text{ Modified Bessel Func, } 1^{\mathrm{st}} \operatorname{kind} \\ K_0(x)=\text{ Modified Bessel Func, } 2^{\mathrm{nd}} \operatorname{kind} \\ C_1, \quad C_2=\operatorname{constants} \end{matrix}$$ #### Connection and General Solution: Use limiting forms: $$\begin{split} \rho \ll 1 & \rho \gg 1 \\ I_0(\rho) \to 1 + \Theta(\rho^2) & I_0(\rho) \to -[\ln(\rho/2) + 0.5772 \cdots + \Theta(\rho^2)] \\ K_0(\rho) \to -[\ln(\rho/2) + 0.5772 \cdots + \Theta(\rho^2)] & K_0(\rho) \to \sqrt{\frac{\pi}{2\rho}} [1 + \Theta(1/\rho)] \end{split}$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 122 Comparison shows that we must choose for connection to the near solution and regularity at infinity: $$C_1 = 0$$ $$C_2 = \frac{\lambda_t}{2\pi\epsilon_0}$$ General solution shows Debye screening of test charge in the core of the beam: $$\delta\phi = \frac{\lambda_t}{2\pi\epsilon_0} K_0 \left(\frac{r}{\gamma_b \lambda_D}\right) \qquad K_0(x) \quad \begin{array}{ll} \text{Order Zero} \\ \text{Modified Bessel Function} \end{array}$$ $$\simeq \frac{\lambda_t}{2\sqrt{2\pi}\epsilon_0} \frac{1}{\sqrt{r/(\gamma_b \lambda_D)}} e^{-r/(\gamma_b \lambda_D)} \qquad r \gg \gamma_b \lambda_D$$ - ◆ Screened interaction does not require overall charge neutrality! - Beam particles redistribute to screen bare interaction - Beam behaves as a plasma and expect similar collective waves etc. - ◆ Same result for all smooth thermal equilibrium distributions and in 1D, 2D, and 3D - Reason why lower dimension models can get the "right" answer for collective interactions in spite of the Coulomb force varying with dimension - See table on next slide and Homework problem for 3D (easier than 2D case!) - Explains why the radial density profile in the core of space-charge dominated beams are expected to be flat Debye screened potential for a test charge inserted in a thermal equilibrium beam essentially the same in 1D, 2D, and 3D Test Charge: 1D: Sheet Charge Density: $\Sigma_t$ All Cases: 2D: Line Charge Density: $\lambda_t$ $\lambda_D = \left(\frac{\epsilon_0 T}{a^2 \hat{n}}\right)^{1/2}$ 3D: (physical case) Point Charge: | Dimension | Distance Measure | Test Charge Density $\rho =$ | Screened Potential $\delta \phi \simeq$ | |-----------|------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------| | 1D | x | $\Sigma_t \delta(x)$ | $ rac{\gamma_b \lambda_D \Sigma_t}{2\epsilon_0} e^{- x /(\gamma_b \lambda_D)}$ | | 2D | $r = \sqrt{x^2 + y^2}$ | $\lambda_t rac{\delta(r)}{2\pi r}$ | $\frac{\lambda_t}{2\sqrt{2\pi}\epsilon_0} \frac{r}{\sqrt{r/(\gamma_b \lambda_D)}} e^{-r/(\gamma_b \lambda_D)}, r \gg \gamma_b \lambda_D$ | | 3D | $r = \sqrt{x^2 + y^2 + z^2}$ | $q_t\delta(x)\delta(y)\delta(z)$ | $\frac{q_t}{4\pi\epsilon_0 r}e^{-r/(\gamma_b\lambda_D)}$ | References for Calculation: 1D: Lund, Friedman, Bazouin, PRSTAB 14, 054201 (2011) 2D: 3D: Davidson, Theory of Nonneutral Plasmas, Addison-Wesley 1989 SM Lund, USPAS, June 2011 #### S9: Continuous Focusing: The Density Inversion Theorem Shows that in an equilibrium distribution the x and x' dependencies are strongly connected due to the form of $f_{\perp}(H_{\perp})$ and Poisson's equation For: $$egin{aligned} f_{\perp} &= f_{\perp}(H_{\perp}) \ &= rac{1}{2} \mathbf{x}_{\perp}'^2 + rac{1}{2} k_{eta 0}^2 \mathbf{x}_{\perp}^2 + rac{q \phi}{m \gamma_b^3 eta_b^2 c^2} \ &= rac{1}{2} \mathbf{x}_{\perp}'^2 + \psi(r) \ &\qquad \psi \equiv rac{1}{2} k_{eta 0}^2 r^2 + rac{q \phi}{m \gamma_b^3 eta_b^2 c^2} \end{aligned}$$ calculate the beam density acculate the beam density $$n(r)=\int d^2x'_\perp \ f_\perp(H_\perp)=2\pi\int_0^\infty dU \ f_\perp(U+\psi(r)) \qquad U\equiv \frac{1}{2}{\bf x}'^2_\perp \\ H_\perp=U+\psi$$ lifterentiate: differentiate: $$\frac{\partial n}{\partial \psi} = 2\pi \int_0^\infty dU \, \frac{\partial}{\partial \psi} f_{\perp}(U + \psi) = 2\pi \int_0^\infty dU \, \frac{\partial}{\partial U} f_{\perp}(U + \psi) \qquad \frac{\partial f_{\perp}}{\partial H_{\perp}} = \frac{\partial f_{\perp}}{\partial U}$$ $$= 2\pi \lim_{U \to \infty} f_{\perp}(U + \psi) - 2\pi f_{\perp}(U + \psi)|_{U=0} = -2\pi f_{\perp}(\psi)$$ bounded distribution $$\frac{\partial f_{\perp}}{\partial U} = \frac{\partial f_{\perp}}{\partial U}$$ $$= \frac{\partial f_{\perp}}{\partial U}$$ $$\implies \boxed{ f_{\perp}(H_{\perp}) = -\frac{1}{2\pi} \frac{\partial n}{\partial \psi} \Big|_{\psi = H_{\perp}}}$$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 125 Assume that n(r) is specified, then the Poisson equation can be integrated: $$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\phi}{\partial r}\right) = -\frac{qn(r)}{\epsilon_0}$$ $$\phi(r) = -\frac{q}{\epsilon_0} \int_0^r \frac{d\tilde{r}}{\tilde{r}} \int_0^{\tilde{r}} d\tilde{r} \ \tilde{r} \ n(\tilde{\tilde{r}})$$ Calculate the effective potential: $\psi(r) = \frac{1}{2}k_{\beta 0}^2 r^2 + \frac{q\phi(r)}{m\gamma_k^3\beta_k^2c^2}$ $$\psi(r) - \frac{q\phi(r=0)}{m\gamma_b^3\beta_b^2c^2} = \frac{1}{2}k_{\beta 0}^2r^2 - \frac{q}{m\gamma_b^3\beta_b^2c^2\epsilon_0} \int_0^r \frac{d\tilde{r}}{\tilde{r}} \int_0^{\tilde{r}} d\tilde{\tilde{r}} \ \tilde{r} \ n(\tilde{\tilde{r}})$$ For n(r) = const $$\int_0^r \frac{d\tilde{r}}{\tilde{r}} \int_0^{\tilde{r}} d\tilde{\tilde{r}} \, \tilde{\tilde{r}} \, n(\tilde{\tilde{r}}) \, \propto r^2$$ This suggests that $\psi(r)$ is monotonic in r when d n(r)/dr is monotonic. Apply the chain rule: **Density Inversion Theorem** $$\begin{split} f_{\perp}(H_{\perp}) &= -\left.\frac{1}{2\pi}\frac{\partial n}{\partial \psi}\right|_{\psi = H_{\perp}} = -\frac{1}{2\pi}\left.\frac{\partial n(r)/\partial r}{\partial \psi(r)/\partial r}\right|_{\psi = H_{\perp}} \\ \psi(r) &= \frac{1}{2}k_{\beta 0}^2 r^2 + \frac{q\phi}{m\gamma_b^3\beta_b^2c^2} \end{split}$$ For specified monotonic n(r) the density inversion theorem can be applied with the Poisson equation to calculate the corresponding equilibrium $f_{\perp}(H_{\perp})$ SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 126 Comments on density inversion theorem: - $\bullet$ Shows that the x and x' dependence of the distribution are *inextricably linked* for an equilibrium distribution function $f_{\perp}(H_{\perp})$ - Not so surprising -- equilibria are highly constrained - If $df_{\perp}(H_{\perp})/dH_{\perp} \leq 0$ then the kinetic stability theorem (see: S.M. Lund, lectures on Transverse Kinetic Stability) shows that the equilibrium is also stable - The beam density profile n(r) can be measured in the lab using several methods, but full 4D x,y x',y' phase-space is typically more difficult to measure. Insofar as the beam is near equilibrium form, the inversion theorem can be applied to infer the full distribution phase-space from measurement of the beam density profile. // Example: Application of the inversion theorem to the KV equilibrium $$n = \begin{cases} \hat{n}, & 0 \le r < r_b \\ 0, & r_b < r \end{cases} \implies \frac{\partial n}{\partial r} = -\hat{n}\delta(r - r_b)$$ $$\frac{\partial n}{\partial \psi} = \frac{\partial n/\partial r}{\partial \psi/\partial r}$$ property of delta-function: $$= -\frac{\hat{n}\delta(r - r_b)}{\partial \psi/\partial r}$$ $$\delta(f(x)) = \sum_i \frac{\delta(x - x_i)}{|df/dx|_{x = x_i}}$$ $$= -\frac{\hat{n}\delta(r - r_b)}{\partial \psi/\partial r|_{r = r_b}}$$ $$f(x_i) = 0$$ $$= -\hat{n}\delta(\psi(r) - \psi(r_b))$$ $x_i$ is root of $f$ use: $\psi(r_b) = H_{\perp}|_{\mathbf{x}'_{\perp}=0} = H_{\perp b}$ $$\implies \left| f_{\perp}(H_{\perp}) = -\frac{1}{2\pi} \frac{\partial n}{\partial \psi} \right|_{\psi = H_{\perp}} = \frac{\hat{n}}{2\pi} \delta(H_{\perp} - H_{\perp b})$$ Expected KV form Steps in this example can be used to "derive" the delta-function form required for the elliptical beam KV distribution in the more general elliptical beam case: - ◆ Use canonical transforms (Appendix B) to express elliptical beam in axisymmetric form - Apply inversion theorem as outlined above in transformed variables - ◆ Transform back to regular variables to obtain KV distribution for an elliptical beam These steps also imply that the KV form is unique SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 127 SM Lund, USPAS, June 2011 ### S10: Comments on the Plausibility of Smooth Vlasov Equilibria in Periodic Transport Channels The KV and continuous models are the only (or related to simple transforms thereof) known exact beam equilibria. Both suffer from idealizations that render them inappropriate for use as initial distribution functions for detailed modeling of stability in real accelerator systems: - ▶ KV distribution has an unphysical singular structure giving rise to collective instabilities with unphysical manifestations - Low order properties (envelope and some features of low-order plasma modes) are physical and very useful in machine design - Continuous focusing is inadequate to model real accelerator lattices with periodic or s-varying focusing forces - Focusing force cannot be realized (massive partially neutralizing background charge) - Kicked oscillator intrinsically different than a continuous oscillator There is much room for improvement in this area, including study if smooth equilibria exist in periodic focusing and implications if no exact equilibria exist. • M. Dorf et. al: Carried out systematic simulations adiabatically changing Dorf, Davidson, Startsev, Oin, Phys. Plasmas 16, 123107 (2009) • S. Lund et. al: Guessed a primitive construction taking continuous focusing similar periodic beams with small residual oscillations excellent results up to near stability limits in $\sigma_0$ Lund, Kikuchi, Davidson, PRSTAB 12, 114801 (2009) theories showing near equilibrium structure for low $\sigma_0$ continuous foucing to periodic quadrupole at low $\sigma_0$ and find nearly self- distributions and applying KV canonical transforms to better match to periodic focusing. Procedure implemented in WARP code and shown to produce • E. Startsev et. al: Developed systematic Hamiltonian averaged perturbation • K. Sonnad et. al: Developed a canonical transform theory including space- charge which promises increased insight with a high degree of flexability K. Sonnad and J. Cary, PRE 69, 056501(2004) and an extension to be published Startsey, Davidson, Dorf, PRSTAB 13, 064402 (2010) + Extension papers SM Lund, USPAS, June 2011 distributions that are very near equilibria: Transverse Equilibrium Distributions 129 Transverse Equilibrium Distributions 132 SM Lund, USPAS, June 2011 Recent progress has been made in better understanding whether smooth equilibria exist in periodic focusing lattices. Results suggest that they are at least classes of "Interaction of Intense Charged Particle Beams Corrections and suggestions for improvements are welcome. Contact: Steven M. Lund Lawrence Berkeley National Laboratory BLDG 47 R 0112 1 Cyclotron Road Berkeley, CA 94720-8201 SMLund@lbl.gov (510) 486 - 6936 SM Lund, USPAS, June 2011 Please do not remove author credits in any redistributions of class material. Details beyond the scope of this class. Much remains to be done! SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 131 If smooth "equilibrium" beam distributions exist for periodic focusing, then they are highly nontrivial. #### Would a nonexistence of an equilibrium distribution be a problem? - ◆ Real beams are born off a source that can be simulated - Propagation length can be relatively small in linacs - ◆ Transverse confinement can exist without an equilibrium - Particles can turn at large enough radii forming an edge - Edge can oscillate from lattice period to lattice period without pumping to large excursions Might not preclude long propagation with preserved statistical beam quality #### Even approximate equilibria would help sort out complicated processes: - Reduce transients and fluctuations can help understand processes in simplest form - Allows more "plasma physics" type analysis and advances - ▶ Beams in Vlasov simulations are often observed to "settle down" to a fairly regular state after an initial transient evolution - Extreme phase mixing leads to an effective relaxation Transverse Equilibrium Distributions 130 These notes will be corrected and expanded for reference and future editions of US Particle Accelerator School and University of California at Berkeley courses: "Beam Physics with Intense Space Charge" with Electric and Magnetic Fields" by J.J. Barnard and S.M. Lund ### References: For more information see: - J. Barnard and S. Lund, *Intense Beam Physics*, US Particle Accelerator School: http://uspas.fnal.gov/lect\_note.html Lecture Notes: 2011, 2008, 2006, 2004 http://hifweb.lbl.gov/USPAS\_2011 Course Info + Lecture Notes: 2011 - J. Barnard and S. Lund, Interaction with of Intense Charged Particle Beams with Electric and Magnetic Fields, Nuclear Engineering 290H, UC Berkeley, Spring Semester, 2009 http://hifweb.lbl.gov/NE290H Course Info + Lecture Notes - M. Reiser, Theory and Design of Charged Particle Beams, Wiley (1994, 2008) - R. Davidson, *Theory of Nonneutral Plasmas*, Addison-Wesley (1989) - R. Davidson and H. Qin, Physics of Intense Charged Particle Beams in High Energy Accelerators, World Scientific (2001). - H. Wiedermann, *Particle Accelerator Physics*, Springer-Verlag (1995) - F. Sacherer, Transverse Space-Charge Effects in Circular Accelerators, Univ. of California Berkeley, Ph.D Thesis (1968) SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 133 - S. Lund, T. Kikuchi, and R. Davidson, Review Article: "Generation of initial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity," PRSTAB 12, 114801 (2009) - S. Lund and B. Bukh, Review Article: "Stability Properties of the Transverse Envelope Equations Describing Intense Beam Transport," PRSTAB 7, 024801 (2004) - D. Nicholson, Introduction to Plasma Theory, Wiley (1983) - I. Kaphinskij and V. Vladimirskij, in Proc. Of the Int. Conf. On High Energy Accel. and Instrumentation (CERN Scientific Info. Service, Geneva, 1959) p. 274 - S. Lund, A. Friedman, and G. Bazouin, "Sheet beam model for intense space charge: Application to Debye screening and the distribution of particle oscillation frequencies in a thermal equilibrium beam," PRSTAB **14**, 054201 (2011) SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 134 ## Acknowledgments: Numerous members of the combined "Heavy Ion Fusion" and "Beam Driven Warm Dense Matter" research groups at Lawrence Livermore National Laboratory (LLNL), Lawrence Berkeley National Laboratory (LBNL), and Princeton Plasma Physics Laboratory (PPPL) provided input, guidance, and stimulated development of material presented. Special thanks are deserved to: Rodger Bangerter Ronald Davidson Mikhail Dorf Andy Faltens Alex Friedman Dave Grote Enrique Henestroza Dave Judd Igor Kagonovich Joe Kwan Ed Lee William Sharp Steve Lidia Lou Reginato Peter Seidl Edward Startsev Jean-Luc Vay Will Waldron Simon Yu SM Lund, USPAS, June 2011